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ABSTRACT: Stream-dwelling fish face highly-variable environmental conditions 
from fall to winter due to fluctuations in water temperatures, discharge, and ice 
conditions. We provide an in-depth description of the interactions between these 
complex environmental conditions and behaviors of stream-dwelling salmonids 
during winter. Fisheries managers should be aware of the conditions that fish confront 
during winter in order to make appropriate management decisions. Diverse habitats, 
including deep pools with low water velocities, coarse rock substrate, and abundant 
cover, as well as side channels and backwaters, aid in the survival of overwintering 
fish. The inflow of relatively warm groundwater into the water column can be an 
important factor affecting winter habitat. Considering the length of winter and the 
vulnerability of fish during winter, a broad understanding of winter ice process and 
their effects on stream dwelling fish can aid in the preservation and improvement of 
winter habitats.

Feature: 

Stream-dwelling fish face many challenges as a result of the 
highly variable environmental conditions from fall to winter 
to spring due to fluctuations in water temperatures, discharge, 
and ice conditions. Our purpose is to create a wider awareness 
of winter ice processes, habitat conditions, responses of fish to 
winter conditions, and the challenges that winter conditions 
pose in the management of many lotic fisheries. The relative 

role that groundwater plays in the formation of fish habitat 
can vary both temporally (i.e., changes among and within 
seasons) and spatially within a stream network. Thermal con-
ditions and winter habitats for salmonids can be highly vari-
able in some segments of streams and rivers, but relatively 
stable in others. Winter habitat for fish within a stream or 
river segment is affected by a complex array of factors includ-
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Introducción a la relación entre el 
invierno, el hielo y los peces:  
qué deben saber los biólogos 
pesqueros acerca de los procesos 
del hielo y los peces de ríoh
Resumen: los peces demersales de río enfrentan condiciones ambientales altamente 
variables entre otoño e invierno debido a fluctuaciones en la temperatura del agua, 
descargas fluviales y las condiciones del hielo. En la presente contribución se ofrece 
una descripción detallada de las interacciones entre estas complejas condiciones 
ambientales y los comportamientos de los salmónidos en los ríos durante el invierno. 
Los administradores de pesquerías deben considerar las condiciones que confrontan 
los peces durante el invierno para tomar decisiones apropiadas de manejo. Diversos 
hábitats como las piscinas profundas con bajas velocidades de corriente, sustratos 
rocosos así como ríos tributarios y aguas estancadas, participan en la supervivencia 
de los peces hibernantes. El influjo de agua relativamente más cálida, proveniente 
del subsuelo, hacia la columna de agua puede ser un factor importante que afecta el 
hábitat invernal. Considerando que la duración del invierno y la vulnerabilidad de 
los peces durante esta estación, el entendimiento de los procesos fluvioglaciares y sus 
efectos en los peces demersales de río puede aportar información para la preservación 
y mejoramiento de los hábitats invernales.
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ing groundwater input, snowfall, elevation, latitude, channel 
type, and channel size. Anthropogenic influences, such as 
hydroelectric dams, groundwater extraction, and construc-
tion of instream structures to improve fish habitat are addi-
tional factors that affect winter habitat conditions in lotic 
systems. These complexities make it difficult to understand 
the winter habitat needs and behaviors of stream-dwelling 
fish, particularly their responses to river ice dynamics and 
interactions between groundwater and river ice. This review 
provides descriptions of the interactions among complex 
environmental conditions and behaviors of stream-dwelling 
fish during winter in order for fisheries managers to under-
stand the conditions 
that salmonids con-
front. We attempt 
to link environmen-
tal conditions to 
management needs, 
describe when sal-
monid movements 
occur during winter 
and why, and exam-
ine the instream 
habitats that may be 
unstable during winter and why. Concurrently, we describe 
the instream habitats that are likely to be stable during win-
ter and may be candidates of protective measures or habitat 
improvements. This review focuses on rivers and streams in 
temperate regions where it is cold enough for waters to have 

ice formations during winter. Within temperate regions, most 
winter research has been conducted on trout and salmon in 
rivers and streams. For this reason, the emphasis is on salmo-
nids in flowing waters. This review synthesizes the endeavors 
of previous authors, such as Cunjak (1996), and complements 
those of others, such as Huusko et al. (2007), who focused 
primarily on juvenile salmonids.

For this review, Cunjak’s (1996) definition of winter is 
used—“the period immediately following egg deposition by 
autumn-spawning salmonids (and coincident with a decline 
in water temperature) and extending until the loss of all sur-
face ice (often accompanied by a major spate and snowmelt) 

and prior to any 
reproductive 
activity by spring-
spawning, non-
gadid fish.” This 
definition is more 
appropriate than 
the astronomical 
definition of the 
period between 
the winter sol-
stice (December 

21) and the spring equinox (March 21) within the Northern 
Hemisphere, because freezing water temperatures and ice 
are often present in north-temperate streams well before 
December and last as long as frigid air temperatures and mod-
erate water discharge persist. 

Frazil ice crystals suspended in supercooled 
water have been called “active” because they 
are growing and have the ability to stick to 
any and all unheated underwater objects, 

including rocky substrate, vegetation, woody 
debris, or man-made structures (Ashton 1986). 

Figure 1. Patchy anchor ice on the North Ram River, Alberta. Photo by R. S. Brown.
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River Ice Processes
In regions where average air temperatures drop below 0°C 

for periods of days or more, the heat loss from the water surface 
to the atmosphere causes the water temperature to decrease 
until it reaches 0°C. The rate of decrease depends on water 
depth, volume of flow, and exposure of the water surface. The fact 
that water has its maximum density at 4°C influences the vertical 
temperature distribution throughout its depth. As the water cools 
in the range of 4°C to 0°C during the winter season, it becomes 
less dense and the possibility of stratification arises. In streams 
and rivers with any appreciable current velocity, turbulent mixing 
generated by the river current is sufficient to overcome stratifi-
cation, vertically mix the water column, and produce a uniform 
water temperature throughout. However, in lakes, ponds, and 
river reaches where the flow velocity is very low to non-existent, 
the water column becomes stratified with the coldest, least dense 
water at the surface. In these cases, ice production is limited to 
the water surface. 

Supercooling, frazil 
and anchor ice 
formation

Within vertically-mixed stream or river reaches, the entire 
water column can cool to below 0°C and become supercooled. 
Supercooling levels are small, typically less than 0.1°C. While 
it is not common to think of water being a liquid at tempera-
tures below 0°C, it must be remembered that, as long as the air 
temperature is below 0°C, the only mechanism limiting the mag-
nitude and duration of supercooling is the latent heat released 
when liquid water changes to solid ice. Water will remain super-
cooled until the latent heat warms the water column back to 0°C. 
However, there is a time lag before enough growing ice is present 
to overcome the heat loss to the atmosphere and warm the water 
back to near 0°C. 

In practical terms, supercooling occurs when little or no sur-
face ice is present, the air temperature is sub-freezing, and the 
water flow is sufficiently turbulent to overcome stratification. The 
genesis of the very first ice crystals is thought to result from seed 
crystals introduced at the water surface that become suspended in 
the water column by turbulence. Once introduced, these initial 
crystals lead to the creation of many new crystals that grow in size 
in the supercooled water (Daly 1984). This type of ice formation 
is referred to as frazil ice. Frazil ice crystals suspended in super-
cooled water have been called “active” because they are growing 
and have the ability to stick to any and all unheated underwater 
objects, including rocky substrate, vegetation, woody debris, or 
man-made structures (Ashton 1986). 

Frazil ice deposited on the channel bottom is called anchor 
ice (Figure 1). Anchor ice in streams and rivers is typically com-
posed of many small ice crystals and often has a milky appearance 
(Figure 2). In some cases, anchor ice includes sediment deposited 
along with the ice crystals and takes on a brownish appearance. 
The actual form of anchor ice is related to the flow conditions 
(Kerr et al. 2002; Kempema and Ettema 2009). In riffles with fast 
current, it can become quite thick and create anchor ice dams 
(Gerard 1989; Figure 3). These dams can temporarily block much 

or all of the water discharge in a stream or river leading to large 
fluctuations in water levels (Maciolek and Needham 1952; Daly 
2005, Stickler et al. 2008a). For example, in a small Newfoundland 
stream, it was observed that anchor ice dams increased water 
depth by up to 0.7 m, decreased water velocity, and changed riffles 
to runs upstream from dams (Stickler et al. 2008a).

Anchor ice has been observed to lift from channel beds during 
early daylight hours following cold nights when frazil ice is formed. 
Anchor ice can transport large amounts of sediment, gravel, and 
aquatic invertebrates downstream (Martin et al. 2000; Kempema 
et al. 2002). It is common to see frazil slush on the surface of 
streams or rivers after a period of frazil ice production (Figure 4). 
Frazil slush is composed of anchor ice lifted from the bottom and 
frazil ice crystals, either singly or flocculated together. Since frazil 
slush is buoyant, it can consolidate on the water surface and pack 
or clump together into large floes. Freezing of interstitial water 
among consolidated ice crystals increases the strength and rigid-
ity of floes. 

In stream and river reaches with turbulent flows, frazil crystals 
at the surface may not consolidate and frazil ice may stay in the 
form of slush. In less turbulent reaches, circular, pancake floes may 
form with diameters of a meter or more (Figure 5). In reaches with 
low current velocities, very large floes can form and their effective 
diameter can be on the order of the channel width (Osterkamp 
and Gosink 1983). 

Ice cover formation
Stationary ice cover can have a significant effect on both dis-

charge and stage of streams and rivers (Ashton 1986). Ice moving 
at or near the velocity of the water surface has little impact on 
flow conditions. However, when the surface concentration and 
strength of floating ice increases to the point where significant 
shear stresses can be transmitted to the channel banks through 
the surface ice, it can begin to influence water flow. Shear stress 
causes the velocity of the floating ice to slow relative to the water 
in the rest of the channel. This slowing exerts resistance on the 
flowing water, decreasing the rate of discharge and increasing 
the stage of the river upstream, while decreasing these factors 
downstream. 

The formation of stationary solid surface ice covers generally 
from where the moving ice motion is arrested by natural obstacles 
such as intact ice cover, river constrictions, or changes in channel 
slope. Ice motion can also be arrested by anthropogenic obstruc-
tions, such as bridge piers, dams, or ice control structures. Once 
ice motion is arrested, stationary ice cover can progress upstream 
with the leading edge of the ice cover advancing due to the arrival 
of ice floes from upstream (Figure 6). 

The ice formation process depends on the form of ice (i.e., 
slush, pancake floes, or large floes) when it arrives at stationary 
ice cover, the hydraulic conditions at the leading upstream end 
of the ice cover, and the heat loss rate to the atmosphere. Initial 
ice cover, formed of individual ice floes, can thicken abruptly 
through shoving or consolidation events. These events start 
immediately after ice cover is formed and continue until ice 
cover is strong enough to resist the forces acting on it (Beltaos 
2008; Hicks 2009). In addition, the strength and thickness of ice 
cover can increase through heat transfer to the atmosphere as the 
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interstitial water among the initial ice floes forming the ice cover 
freezes (Calkins 1979).

Hanging dams
The upstream progression of stationary ice cover may slow or 

stop altogether in reaches with fast-flowing water. Reaches that 
remain free of ice cover can produce substantial quantities of frazil 
ice that are transported downstream and deposited under ice cover 
(Figure 7). When this ice is deposited under ice cover in reaches 
with low water velocity—such as pools—a significant portion of 
the channel cross section can be blocked by deposited frazil ice. 
These depositions, sometimes referred to as hanging dams, can 
become quite large (e.g., extending across the channel of large 
rivers and up to a kilometer or more in length), restrict water flow, 
and increase current velocities through pools, transforming pools 
into areas with high current velocities (Gold and Williams 1963; 
Cunjak and Caissie 1994; Komadina-Douthwright et al. 1997; 
Brown et al. 2000).

Once stationary ice cover has formed on a stream or river 
reach, it can last throughout the winter as long as air tempera-
tures remain cold and the discharge remains steady or declines. 
The amount of surface ice cover varies with both latitude and 
altitude. Streams and rivers in the Arctic may be covered in sur-
face ice for more than half of the year, whereas streams and rivers 
at low latitudes or at low altitudes in the north temperate region 
may not have complete surface ice cover (Craig 1989). 

Ice cover breakup and 
ice jams

Breakup of stationary ice cover transforms a completely ice-
covered stream or river reach into an open system. Two examples 
illustrate the types of breakup commonly found in north temper-
ate regions of North America (Daly 1995; Beltaos 2008). At one 
extreme is thermal meltout. During an ideal thermal meltout, ice 
cover deteriorates through warming and the absorption of solar 
radiation, and melts in place, with no increase in discharge and 
little or no movement of ice. At the other extreme is the more 
complex and less understood mechanical breakup. Mechanical 
breakup requires no deterioration of ice cover but results from an 
increase in discharge. The increase in discharge induces stresses 
in the ice cover, and the stresses cause cracks and fragment the ice 
cover into pieces that are transported by the current. 

Breakups of stationary ice cover take place most often dur-
ing warming periods when the strength of the ice cover dete-
riorates to some degree and the flow entering the stream or 
river reach increases because of snowmelt or precipitation. 
Therefore, most ice breakups actually fall somewhere between 
the extremes of thermal meltout and mechanical breakup. As 
a general rule, the closer a breakup is to being a mechanical 
breakup, the more dramatic it is because of the increase in 
flow and the large volume of fragmented ice produced (Daly 
1995; Beltaos 2008).

Figure 2. An underwater photograph of anchor ice clinging to the bottom of Dutch Creek, Alberta. Photo by R. S. Brown.
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Ice jams can occur at locations where the ice fragments 
stop moving with the current. Severe and sudden flooding 
can result upstream of ice jams or downstream of ice jams 
when they release. Surface ice cover can fill the entire chan-
nel with chunks of ice and create ice jams that flood large 
upstream segments of streams or rivers and leave downstream 
segments dewatered (Beltaos 1995).

Fish and Winter

Water temperature influences 
feeding, metabolism, and 
behavior

Water temperature has a substantial effect on fish because 
they are poikilothermic and their body temperatures vary with 
the external environment. At a given water temperature, the 
body temperature of freshwater fish is almost precisely the 
temperature of the water (Diana 1995). As body temperature 
changes, so do metabolic processes. When water temperature 
declines from fall into winter, metabolic processes slow down 
and the abilities of fish to swim, feed, avoid predators, and 
defend their locations decline (Beamish 1978; Parsons and 
Smiley 2003). At winter water temperatures (i.e., about 1oC 
or less under ice), most freshwater fish have little ability to 
respond to changes in their environment, such as changes in 
flow, or to avoid predators, such as mink (Mustela vison).

As water temperatures decrease in fall or early winter, 
defense of feeding positions becomes less important to fish 
while the search for suitable winter habitat becomes more 
important (Cunjak and Power 1986; Cunjak 1996; Lindstrom 
and Hubert 2004a). Adult trout may initiate movements, 
some of which may be very long distances, in search of suit-
able winter habitat (Bjornn 1971; Chisholm et al. 1987; 
Brown and MacKay 1995; Jakober et al. 1998; Lindstrom 
and Hubert 2004a). Such movements occur as the swimming 
abilities of fish decrease with declining water temperatures 
(Contor 1989; Sheppard and Johnson 1985; Simpkins et al. 
2000a). 

Many fish, such as salmonids, do not cease activity 
entirely, and feed throughout the winter (Needham and 
Jones 1959; Cunjak and Power 1987; Kolok 1991, Riehle 
and Griffith 1993; Pirhonen et al. 1997, Hebdon and Hubert 
2001a; Simpkins et al. 2000b), even when water tempera-
tures are less than 5oC (Lyons and Kanehl 2002, Dare and 
Hubert 2003). However, the ability of salmonids to acquire 
and assimilate food becomes more limited as water tempera-
tures decline to near 0oC (Chapman and Bjornn 1969; Brett 
and Glass 1973; Metcalfe and Thorpe 1992). Concomitantly, 
growth may cease during winter (Cunjak and Power 1986; 
Metcalfe and Thorpe 1992).

During winter, the production of benthic invertebrates 
declines, and densities of drifting food items are low, so there 
can be little food available for sight-feeding insectivores such 
as trout (Simpkins et al. 2000b; Hebdon and Hubert 2001b). 
Cold water temperatures depress metabolic rates of fish dur-
ing winter and prolong the duration that salmonids and 
other fish can survive with little or no food (Cunjak 1988; 

Connolly and Peterson 
2003; Simpkins et 
al. 2003a). Thus, the 
combination of cold 
water temperatures 
and depressed meta-
bolic rates during 
winter provides a sur-
vival mechanism for 
salmonids and other 
fish in streams. 

Use of 
energy 
stores

Because of the 
physiological con-
straints on capture 
and consumption of 
food at low water 
temperatures and 
reduced availability 
of prey during win-
ter, fish must uti-
lize energy stored in 
their bodies (Cunjak 
1988; Simpkins et 
al. 2000b, 2004a, 
2004b). For example, 
salmonids are adapted 
to mobilize energy 
reserves and survive 
long periods with-
out food (Toneys and 
Coble 1980; Navarro 
and Gatierrez 1995; 
Simpkins et al. 
2003a). A complex 
three-stage physi-
ological mechanism is 
involved in the mobilization of energy reserves and 
the defense of critical body organs (Castellini and Rea 1992; 
Hervant et al. 2001; Simpkins et al. 2003b). In short, during 
the first few days of food deprivation, glycogen reserves in the 
liver are used as an energy source. As starvation continues, 
the body switches to use of lipids as an energy source while 
preserving proteins. In later stages of starvation when lipids 
are depleted, the body begins to use proteins as a source of 
energy. The use of proteins compromises vital organ func-
tions. Starvation and death occur after lipid reserves are 
depleted and protein degradation destroys the function of 
vital organs. 

This starvation process has been widely observed among 
salmonids and has been related to declines in lipids through 
the course of winter among fish in both the wild (Beckman 
et al. 2000; Finstad et al. 2004a) and controlled experiments 
(Simpkins et al. 2003a, 2003b, 2004a, 2004b). Declines in 
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body condition using indices of plumpness based on length 
and weight measurements have also indicated starvation pro-
cesses among salmonids during winter (Simpkins et al. 2000b; 
Hebdon and Hubert 2001a), but body condition indices are 
not an accurate index of lipid reserves, or the extent of star-
vation experienced by fish (Simpkins et al. 2003a, 2003c). 
Starvation and associated mortality of fish during winter 
are related to the size of fish, with higher rates of starva-
tion and mortality among smaller fish, especially age-0 fish 
in streams (Sogard 1997; Biro et al. 2004; Simpkins et al. 
2004a; Borgstrom and Museth 2005). Size-selective mortal-
ity is a function of the fact that smaller fish have low levels 
of stored energy in their bodies (Shultz and Conover 1997; 
Finstad et al. 2004a) and higher mass-specific metabolic rates 
(Paloheimo and Dickie 1966; Miranda and Hubbard 1994). 

The metabolic limitations that fish experience during 
winter have a variety of ecological consequences, resulting 
particularly in less ability to withstand the stresses of forced 
swimming events and predation by warm-blooded verte-
brates (Marshall 1936; Sealander 1943; Gerell 1967; Jakober 
1995; Simpkins 1997; Lindstrom and Hubert 2004b). When 
changes in environment or habitat occur, fish may be forced 
to swim from their winter refuges to find new refuges (Brown 
and Mackay 1995; Jakober et al. 1998; Simpkins et al. 2000a; 
McKinney et al. 2001; Annear et al. 2002; Dare et al. 2002). 
Forced swimming during winter enhances the rate of lipid 
depletion and generates size-selective mortality (Simpkins et 
al. 2003a, 2003b, 2003c, 2004a). If fasted fish are forced to 
swim to exhaustion, direct mortality may occur or they may 
be more vulnerable to predation (Simpkins et al. 2004b). 

Figure 3. An ice dam on the Grand River, Ontario. The water level is elevated upstream of the dam. Photo by R. S. Brown.
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Fish Behavior and 
Onset of Winter

Habitat changes in fall
The slowing of the metabolism of fish with decreasing water 

temperatures during fall and early winter has implications on 
behavior and habitat use by fish in streams and rivers. Because 
their metabolism slows and they feed less, fish are less likely 
to defend feeding positions (Cunjak and Power 1986; Cunjak 
1996). Also, because fish are feeding less, the habitats that were 
optimal during warmer parts of the year can become less favor-
able. Larger juvenile and adult fish may abandon feeding territo-
ries and aggregate (a type of schooling (i.e., shoaling) behavior) 
in areas where they can find winter refuges (Hartman 1965; 
Cunjak and Power 1986; Brown and Mackay 1995; Jakober 
et al. 1998). While this occurs for larger fish, smaller fish may 
become nocturnal, move short distances, and hide within inter-
stitial spaces in channel substrate, preferring crevices among 
larger rock substrates (Hartman 1965; Griffith and Smith 1993; 
Linnansaari et al. 2008).

As water temperatures decrease in the fall, larger fish often 
make lesser use of shallow areas with higher water velocities, 
and greater use of deeper areas with slower water velocities. 
This behavior has been observed among riverine salmonids 
(Hartman 1965; Cunjak and Power 1986; Chisholm et al. 1987; 
Baltz et al. 1991; Heggenes et al. 1993; Brown and Mackay 
1995; Jakober et al. 1998) and centrarchids (Lyons and Kanehl 
2002). Because areas with these types of habitats are often lim-
ited in streams and rivers, it is common for fish to be found in 
large groups or aggregations within more optimal habitats. 

The presence of stationary ice cover influences behavior and 
habitat use. For example, Atlantic salmon (Salmo salar) parr 
were observed to be nocturnal during winter, but their activity 
increased during daytime as stationary ice cover became thicker 
(Linnansaari et al. 2008). Although Atlantic salmon parr prefer 
larger substrates, they may use smaller substrate when stationary 
ice cover is present (Linnansaari et al. 2008, 2009). 

Aggregations
Aggregation may be a clumping or squeezing effect result-

ing from limited habitat availability (Cunjak and Power 1986). 
Habitat can be much more limited in winter than in other seasons 
due to low discharge and exclusion of previously suitable habi-
tat by stationary ice (Chisholm et al. 1987; Brown et al. 1994; 
Brown and Mackay 1995; Jakober et al. 1998). Aggregation may 
also provide advantages to members of the group by decreasing 
predation risk (Neill and Cullen 1974; Milinski 1979; Tremblay 
and Fitzgerald 1979; Pitcher 1986). 

Occurrence of winter aggregations of fish is linked to the 
general water temperature of the majority of the stream and the 
inflow of relatively-warm groundwater into the water column. 
The tendency of fish to form high-density winter aggregations 
increases with decreasing overall stream temperature (Cunjak 
and Power 1986; Brown 1999). Aggregations of cutthroat trout 
(Oncorhynchus clarki), brook trout, and brown trout (Cunjak and 

Power 1986; Brown 1999) have been observed in small areas 
of warm groundwater discharge. However, Brown and MacKay 
(1995) observed that fish aggregations were less common in long 
stream sections warmed by groundwater than in colder sections 
without groundwater inputs. 

When anchor ice fills a pool, the 
water then flows through the 
ice in one or more high-veloc-
ity conduits, at water veloci-
ties that are often unsuitable 
for fish to maintain position
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Natural Factors 
Affecting Fish Habitat 
and Behavior During 
Winter

Winter habitats of fish can range from very stable to almost 
consistent change due to variation in ice conditions and water 
temperatures. In some riverine environments, stationary ice 
cover forms early in the winter and seals fish under a stable sheet 
of ice. Deep snow can bridge small streams and also provide sta-
ble overwintering habitats (Chisholm et al. 1987; Hubert et al. 
2000; Lindstrom and Hubert 2004a). However, among reaches of 
streams or rivers, habitats without complete surface ice or snow 
cover are likely to have dynamic ice conditions (Brown 1999; 
Lindstrom and Hubert 2004a; Barrineau et al. 2005).

From the start of freeze-up, ice can occlude fish habitat and 
influence fish behavior. Laboratory studies have shown that super-
cooled water temperatures and frazil ice can stress fish (Brown 
et al. 1999). In addition, stationary ice can form in habitat that 
was available during summer and be very dynamic, making oth-
erwise suitable habitats unusable either temporarily or for most 
of the winter (Chisholm et al. 1987; Brown and Mackay 1995; 
Jakober et al. 1998; Brown 1999; Lindstrom and Hubert 2004a; 
Barrineau et al. 2005). As winter progresses, stationary ice cover 
can increase in thickness until it excludes large portions of hab-
itats used by wintering fish in streams and rivers (Chisholm et 
al. 1987; Berg 1994; Scruton et al., 1997). An extreme example 
occurs in the Arctic where most streams and rivers freeze to the 
bottom of the channel because surface ice can grow to a thickness 
of more than 2 m (Mueller et al. 2006). Consequently, fish must 
reside in the deepest parts of rivers in pockets of unfrozen water or 

Figure 4. Frazil slush on the surface of the Grand River, Ontario. Photo by R. S. Brown.
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in areas influenced by groundwater (Craig 1989; West et al. 1992; 
Reynolds 1996; Brown et al. 2010).

The effects of frazil 
and anchor ice

When stationary ice cover forms and melts frequently dur-
ing fall and winter, the resulting frazil ice and anchor ice 
events create harsh conditions that force fish movements and 
cause mortality (Maciolek and Needham 1952). Anchor ice 
can build up to the water surface and occlude fish from entire 
pools or reaches. When anchor ice fills a pool, the water then 
flows through the ice in one or more high-velocity conduits, 
at water velocities that are often unsuitable for fish to main-
tain position (Figure 8; Brown and Mackay 1995; Jakober et 
al. 1998; Brown 1999; Whalen et al. 1999). Several research-
ers have observed that fish are forced to make larger numbers 
of movements when influenced by frazil ice or anchor ice. 
Fish often shift habitats as the water temperatures decrease 
in the fall (Brown and Mackay 1995; Jakober et al. 1998) and 
may spend the entire winter at these new locations. However, 
if these new habitats are unstable due to the influences of ice, 
the fish may be forced to make multiple movements as ice 
occludes these habitats. One study found that cutthroat trout 
— in reaches influenced by anchor ice — made substantial 
movements 6 times more often during a winter, and moved 30 
times farther than cutthroat trout in reaches free of anchor 
ice (Brown 1999). Other researchers have found that both 
bull trout (Salvelinus confluentus) and cutthroat trout moved 
more often in streams affected by anchor ice than in streams 
with stationary ice cover (Jakober et al. 1998). Cutthroat 
trout and brook trout overwintering in beaver ponds with 
stationary ice cover have been observed to move less than 
those in reaches of the same stream that were influenced 
by unstable ice conditions (Lindstrom and Hubert 2004a). 
Forced movements during frazil ice and anchor ice events can 
be energetically costly to fish and increase the probability of 
mortality. Because frazil ice and anchor ice form in stream 
sections that do not have stationary ice cover, fish in mod-
erately cold climates may be forced to make more ice-related 
movements than fish in colder climates. 

While larger juvenile and adult fish are forced from their 
habitats by anchor ice, small juvenile fish may not be influ-
enced. One study found that although anchor ice completely 
blanketed a stream, Atlantic salmon (Salmo salar) parr were 
not forced to move (Roussel et al. 2004). Other researchers 
have found juvenile Atlantic salmon use anchor ice as cover 
(Stickler et al. 2008b), and redistribute daily as frazil ice and 
anchor ice form and melt (Whalen and Parrish 1999).

Recent research indicates that the distribution of anchor 
ice may influence whether stream reaches can be used by 
juvenile fish. Linnansaari et al. (2009) found that Atlantic 
salmon parr were able to remain in reaches with patchy, 
unconsolidated anchor ice. However, in reaches where dense 
growth of anchor ice extended from the substrate to the 
stream surface, the fish were not able remain, and did not 
re-enter over the course of the winter.

The effects of ice dams 
and hanging dams

Thick deposits of anchor ice in riffles can create ice dams 
similar to ice jams (Gerard 1989; Beltaos 1995; Figure 3), 
causing a stage (i.e., water level) increase upstream from the 
ice dam, and decrease downstream from the ice dam (Maciolek 
and Needham 1952). In a high-elevation California stream, 
researchers found dead brown trout and rainbow trout 
(Oncorhynchus mykiss) stranded on damp rocks in dewatered 
pools downstream of an ice dam (Maciolek and Needham 
1952) and concluded that this type of mortality was common, 
but others have found that ice dams may have little influence 
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on fish. For example, while habitats used by Atlantic salmon 
parr in a small Newfoundland stream upstream of an ice dam 
increased in water depth and decreased in water velocity the 
fish moved little if at all (Stickler et al. 2008a), but the ice 
dam was short lived, forming at night and disintegrating the 
next day.

Frazil ice can affect fish habitat by forming hanging dams. 
Hanging dams can form frequently in cool-temperate and 
colder climates (Komadina-Douthwright et al. 1997), forcing 
lotic fish to cope with resultant changes in habitat. Brown et 
al. (2000) observed that 80% of a pool in an Ontario river was 
filled by a hanging dam causing much higher water velocities 
in the pool (Brown et al. 2000). Others have observed more 
than 80% of the volume of pools filled by hanging dams in 

other systems (Cunjak and Caissie 1994; Caissie et al. 1997; 
Komadina-Douthwright et al. 1997). 

Hanging dams can cause major difficulties for fish during 
winter, but they are often unnoted because they form under 
ice and are difficult to observe. Increased water velocities 
coupled with reduced pool volume can change pools from 
suitable to unsuitable overwintering habitat. This is indi-
cated in studies where radio-tagged fish moved out of pools 
where hanging dams formed, but often returned to the same 
pools after the hanging dams were no longer present (Brown 
et al. 2000; Lindstrom and Hubert 2004a). Hanging dams can 
remain in place for days or from fall freeze-up to spring break-
up (Beltaos and Dean 1981; Komadina-Douthwright et al. 
1997; Brown et al. 2000; Barrineau et al. 2005). 

Figure 5. Pans of frazil slush forming stationary surface ice in a small backwater area along the edge of the Grand River, Ontario. Photo by R. S. Brown.
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The influence of 
groundwater

The inflow of relatively warm groundwater into the water 
column can play a complex role affecting winter habitat 
for fish in streams and rivers. Groundwater input to flow-
ing waters can provide stable overwintering habitats for 
fish and their eggs when they are near the source, but it can 
also contribute to unstable winter conditions further down-
stream. Many researchers have found fish dwelling within the 
main channel or side channels (often in large aggregations) 
where groundwater maintained ice-free habitat (Craig and 
Poulin 1975; Cunjak and Power 1986; Brown and Mackay 
1995; Brown 1999; Harper and Farag 2004; Lindstrom and 
Hubert 2004a; Barrineau et al. 2005). However, as air tem-
peratures decrease, or the distance downstream from ground-
water sources increases, the thermal effects of groundwater 
input dissipate and the amount of ice-free habitat decreases. 
Reaches at the downstream end of groundwater-influenced 
stream segments are likely to have unstable ice conditions 
during winter (Brown 1999; Lindstrom and Hubert 2004a). 
In these reaches, frazil ice may form during colder weather 
and contribute to anchor ice and hanging dams farther 
downstream (Brown 1999; Lindstrom and Hubert 2004a; 
Barrineau et al. 2005). For example, Brown (1999) noted 
radio-tagged cutthroat trout were forced out of the lower 
reach of a groundwater-influenced stream segment by anchor 
ice during cold periods. The fish moved upstream toward the 
source of warmer groundwater during cold periods and later 
dispersed back into the lower reach of the groundwater sec-
tion as air temperatures increased, allowing the length of 
the groundwater-influenced segment to expand. Lindstrom 
and Hubert (2004a) also noted that brook trout and cut-
throat trout tended to avoid pools affected by groundwater 
that were greater than 250 m downstream of the sources of 
influx because winter habitat conditions in these pools were 
dynamic and unstable. 

Ice breakup and 
flooding

Break-up of stationary ice cover can result in large changes 
in fish habitat and cause fish movements that commonly lead 
to mortalities. The occurrence of large volumes of ice moving 
with the current during break-up and associated flooding can 
result in remolding of river channels, moving of small islands, 
redistribution of alluvial gravel bars (Power et al. 1999), and 
crushing of riparian vegetation (Gatto 1994; Hicks 1994; 
Beltaos 1995). Under these conditions, fish may move long 
distances as their winter habitats are altered (Brown et al. 
2001). As discharge increases during stationary ice break-up 
and flooding, water depth and velocities increase in the main 
channel. These changes can make main channel habitats 
more energetically demanding and less preferable for fish, so 
fish may move downstream, into backwaters, or to the edges 
of pools or runs. For example, Brown et al. (2001) found more 
than 10% of a group of radio-tagged white suckers (Catostomus 
commersoni) and common carp (Cyprinus carpio) stranded on 

a floodplain following stationary ice break-up and associated 
flooding, and concluded that such stranding may be a major 
cause of mortality. 

Use of stream margins within runs or backwater areas has 
been found to be one mechanism through which fish avoid 
being swept downstream during stationary ice break-up and 
flooding. While many backwater habitats are shallow or dry 
during low-flow periods, they are commonly used as refuges 
by fish, too (Brown et al. 2001). Additionally, several species 
of centrarchids have been observed to move into backwater 
areas during winter (Knights et al. 1995; Raibley et al. 1997; 
Karchesky and Bennett 2004). Having backwater habitats 
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available in streams and rivers may decrease the numbers 
of fish that are caught in the current and forced to move 
downstream. Backwaters may also reduce the numbers of fish 
stranded on the flood plain where they can easily be taken by 
predators or die as waters recede. 

Floods associated with stationary ice break-up can also 
influence the movements and behaviors of juvenile fish. For 
example, in an experimental stream, Atlantic salmon parr 
made more extensive movements during simulated floods, 
and the proportion of fish homing to their “home stone” after 
nocturnal movements was lower during these flood events 
(Linnansaari et al. 2008).

Winter Habitats
Suitable winter habitats for fish in streams and rivers are loca-

tions that allow fish to minimize energy expenditures while maxi-
mizing protection from environmental variation (Cunjak 1996; 
Bonneau and Scarnecchia 1998; Lindstrom and Hubert 2004a). 
Complex mixes of habitat features can provide suitable winter 
habitat for fish (Jakober et al. 1998; Harvey et al. 1999; Ford and 
Lonzarich 2000; Mitro and Zale 2002). Such habitats are gener-
ally the result of natural fluvial processes that maintain connec-
tions and create habitat diversity allowing full expression of life 

Figure 6. Frazil slush forming stationary surface ice on the North Ram River, Alberta. Photo by R. S. Brown. 
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history traits and processes influencing dispersal and survival of 
fish (Muhlfeld and Marotz 2005). In general, microhabitat fea-
tures needed by stream-dwelling fish include low-velocity water 
and protection from predation (Hiscock et al. 2002; Beechie et 
al. 2005; Gillette et al. 2006), but specific habitat needs within 
these general features can vary among species (Dare and Hubert 
2003). 

Deep pools often provide microhabitat features needed by 
fish during winter, and their quality as winter habitat for fish 
can be enhanced by the presence of crevices between rocks, 
large woody debris, or submergent vegetation (Mitro and Zale 
2002; Muhlfeld et al. 2001). Deep pools have been widely 
described as habitat features needed by stream-dwelling fish 
during winter, but most of the literature characterizing this gen-
erality comes from salmonid studies (Bustard and Narver 1975; 
Cunjak and Power 1986; Heggenes et al. 1993; Bonneau and 
Scarnecchia 1998; Jakober et al. 1998; Simpkins et al. 2000a; 
Dare et al. 2002; Lindstrom and Hubert 2004a). Deep pools in 
small streams provide low-velocity waters and a stable envi-
ronment when there is relatively large variation in discharge 
during ice events. However, in larger streams and rivers, addi-
tional habitat features are needed in pools for them to provide 
suitable winter habitat (Simpkins et al. 2000a). The additional 
features include unique elements, such as complex bank habi-

tat with large rocks (Mitro and Zale 2002), off-channel pools 
with groundwater inputs that slightly raise water temperatures 
(Harper and Farag 2004), large woody debris, or submerged 
aquatic vegetation. Generally, when juvenile salmonids find 
pools with low current velocities and instream cover, they 
move infrequently from these pools during winter (Heggenes 
et al. 1991; Hilderbrand and Kerschner 2000; Simpkins et al. 
2000a; Sanderson and Hubert 2009). 

Water velocities suitable to fish during winter vary among 
species and life stages. Among juvenile salmonids, suitable 
water velocities during winter have been reported to be less 
than 1 body length per second (Simpkins et al. 2000a, 2004a; 
Beechie et al. 2005; Enders et al. 2007). Elements of habi-
tat complexity in pools and runs that create specific locations 
with little or no current velocity during winter, include rocky 
substrate with crevices between rocks, large woody debris, and 
submerged aquatic vegetation. Numerous studies of salmonids 
have described fish concealing themselves in crevices among 
rocks during winter (Schrader and Griswold 1992; Griffith and 
Smith 1993; Riehle and Griffith 1993; Meyer and Gregory 
2000, Muhlfeld et al. 2001; Riley et al. 2006). Other authors 
have described the use of small eddies downstream from large 
cobbles or boulders as habitat used by salmonids during winter 
(Simpkins et al. 2000a; Dare and Hubert 2003). Large woody 

Figure 7. This image shows three kinds of ice. Anchor ice can be seen on the bottom. In mid-column can be seen frazil slush or flocs of frazil ice. At the top of 
the image, a hanging dam can be seen forming under the stationary surface ice as frazil slush becomes buoyant and gathers under the surface ice. Photo by R. 
S. Brown.
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debris has been described as being used to provide protection 
from current and concealment for salmonids in many sys-
tems during winter (Meyer and Gregory 2000; Muhlfeld et al. 
2001; Harper and Farag 2004; Beechie et al. 2005; Muhlfeld 
and Marotz 2005). Large woody debris and backwater habitats 
may be particularly important to salmonids during high-flow 
periods (Harvey et al. 1999, Brown et al. 2001). Many studies 
have described use of submerged aquatic vegetation as cover 
by salmonids during winter (Cunjak and Power 1986, 1987; 
Bendock and Bringham 1988; Heggenes et al. 1993; Griffith 
and Smith 1995; Mitro and Zale 2002). However, submerged 
aquatic macrophytes can deteriorate during winter, forcing fish 
to move and seek new habitat (Simpkins et al. 2000a). Instream 
cover in the form of rocks, large woody debris, and submerged 
aquatic vegetation have been shown to be an important win-
ter habitat feature for several species of centrarchids as well 
(Carlson 1992; Cunjak 1996; Karchesky and Bennett 2004).

Habitats along stream and river banks can be important 
winter refuges for fish. Juvenile salmonids have been observed 
to use stream-bank habitats as refuges during anchor-ice events 
(Griffith and Smith 1993; Riehle and Griffith 1993; Heggenes 
et al. 1993). Atlantic salmon parr have been observed to be 
positioned closer to the stream banks during winter in com-
parison to summer and fall (Mäki-Petäys et al. 2004; Enders 
et al. 2008). Stream-bank habitats may provide cover from 
high current velocities and homoeothermic predators (Cunjak 
1996; Mäki-Petäys et al. 2004). 

Habitat stability during winter is important to fish (Dare et 
al. 2002). If habitat is stable, fish are not forced to move, seek 

new areas of residence, expend more energy, or experience 
greater predation risk (Brown and Mackay 1995; Brown et al. 
2000; Lindstrom and Hubert 2004a). There is substantial natu-
ral variation in the stability of stream and river habitat during 
winter. For example, three classes of winter stream conditions 
have been described among streams of the Rocky Mountains, 
with differing extents of stability during winter (Chisholm et 
al. 1987; Hubert et al. 2000). First are small, high-elevation 
stream segments with low-to-moderate channel gradients that 
become entirely bridged by snow with no stationary ice cover 
during winter. Such streams maintain consistent flows and cold 
water temperatures during winter to provide stable habitats. 
Second, there are moderate-sized, mid-elevation stream seg-
ments with moderate channel slopes that do not snow bridge 
and have patches with and without stationary ice cover dur-
ing winter. These streams experience variation in water tem-
peratures and have dynamic ice conditions throughout winter 
providing unstable habitats for fish. Third are foothills stream 
segments that are larger and tend to have lower channel slopes 
with little snow cover but substantial stationary ice cover. 
Habitat conditions in these stream segments also tend to vary 
during winter, but not as severely as in mid-elevation stream 
segments.

One of the most stable habitats for fish during winter is bea-
ver (Castor canadensis) ponds (Collen and Gibson 2001) with 
consistent water levels, very low current velocities, and station-
ary ice cover throughout winter. Numerous studies have shown 
that trout select beaver ponds during winter (Chisholm et al. 
1987; Jakober et al. 1998; Lindstrom and Hubert 2004a).

Figure 8. An underwater photo of a conduit through anchor ice in Dutch Creek Alberta. Most of the stream was covered in anchor ice leaving just a 
few of these high velocity conduits for water to pass through. Photo by R. S. Brown.
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Anthropogenic 
Influences on Winter 
Habitat 

A wide variety of anthropogenic activities can affect winter habitat 
for fish in streams and rivers. These include construction and operation 
of reservoirs, placement of barriers to fish movements, thermal effluents 
from electrical power production facilities and other industries, point 
sources of contaminants, nonpoint sources of sediments, and instream 
structures built to enhance habitat for fish. 

Effects of dams and 
reservoirs

Widespread construction of reservoirs has had substantial effects 
on downstream fluvial habitats (i.e., tailwaters) during winter. Many 
reservoirs alter natural temperature regimes downstream due to 
hypolimnetic releases resulting in warmer-than-natural winter water 
temperatures. Warmer water temperatures within tailwaters can elimi-
nate stationary ice cover, enhance the dynamics of ice processes, facili-
tate predation by homoeothermic predators, increase energy demands 
of fish during a period of low prey availability, and allow the persistence 
of angling during winter. 

Warmer water temperatures in tailwaters can prevent formation of 
stationary ice cover across the channel for long segments downstream 
from dams (Simpkins et al. 2001a), and contribute to occurrences of 
anchor ice and frazil ice in these segments (Ward and Stanford 1979). 
Frazil ice and anchor ice can fill interstitial spaces among gravel and 
cobble substrates where juvenile fish have sought cover (Stickler et 
al. 2007a; Stickler et al. 
2007b), remove submerged 
aquatic macrophytes that 
are important as sources 
of cover and protection 
from predation (Simpkins 
et al. 2000a; Johnson and 
Douglass 2009), and force 
fish to move from normal 
feeding and resting areas to 
refuges, such as the bottom 
of deep pools or under shelf 
ice in shallow water near shore (Griffith and Smith 1995; Simpkins 
et al. 2000a; Van Kirk and Martin 2000; Stickler et al. 2008a). The 
movements and lack of feeding opportunities in tailwaters caused by 
frazil ice episodes accentuate energy demands on fish, affect starvation 
processes, and perhaps force fish to move downstream out of managed 
reaches (Brown and Mackay 1995; Hebdon 1999), and enhance mor-
tality of juvenile salmonids (Simpkins 1997; Simpkins et al. 2000a; 
Annear et al. 2002). 

Together, warmer water temperatures and lack of snow and sta-
tionary ice cover enable salmonids to feed throughout the winter 
in tailwaters (Simpkins and Hubert 2000b; Hebdon and Hubert 
2001b). However, availability of prey is limited in tailwaters dur-
ing winter, as most aquatic invertebrates have life cycles that make 
them unavailable or inactive during winter (Filbert and Hawkins 
1995; Simpkins and Hubert 2000b; Hebdon and Hubert 2001b). 
Nonetheless, warmer water temperatures lead to higher metabolic 

rates, greater swimming ability, and more activity among salmonids 
in tailwaters, thereby generating a demand on stored energy reserves 
(Berg and Bemset 1998; Cunjak et al. 1998; Simpkins and Hubert 
2000b; Hebdon and Hubert 2001a; Simpkins et al 2003a, 2004a; 
Finstad et al. 2004b). Loss of energy reserves can reduce the ability 
of fish to respond to variation in habitat or threats from predators, 
thereby enhancing mortality of small fish in tailwaters (Metcalfe and 
Thorpe 1992; Bull et al. 1996; Cunjak 1996; Finstad et al. 2004b). 
The lack of stationary ice cover associated with warmer winter water 
temperatures in tailwaters can enhance predation on fish by homoeo-
thermic predators such as mink and river otter (Lutra lutra L.; Fraser 
et al. 1993; Valdimarsson and Metcalfe 1998). 

Channels downstream from reservoirs often change and lose the 
complexity that existed prior to construction of the dam due to reduc-
tions in extremely-high flows and the lack of sediment released from 
dams (Ward and Stanford 1979). The result is often a loss of deep pools 
with low current velocities important to overwintering fish (Stickler 
et al. 2008b). Reservoirs also affect the occurrence of cobble substrate 
with interstitial spaces important to juvenile salmonids during win-
ter (Rimmer et al. 1984; Heggenes 1996; Mäki-Petäys et al. 1997; 
Linnansaari et al. 2008; Stickler et al. 2008b). Highly-embedded, 
armored channels downstream from reservoirs generally lack cobbles 
with interstitial spaces. 

Because dams regulate the flows of rivers for a variety of economic 
reasons, discharge regimes during winter are often quite different from 
relatively stable natural conditions. Variable discharges to meet hydro-
power, flood control, and water storage functions can lead to variable 
flows during winter, causing substantial variation in habitat at a time 
when fish need stable habitat (Dare et al. 2001; Lagarrigue et al. 2002; 
Enders et al. 2008). Variation in flows during winter downstream from 
reservoirs can strand fish (Saltveit et al. 2001; Berland et al. 2004; 
Stickler et al. 2007a; Stickler et al. 2007b; Enders et al. 2008), force 

fish to move from previ-
ously occupied habitats 
(Armstrong et al. 1998; 
Dare et al. 2002; Enders et 
al. 2008), accentuate mor-
tality due to predation by 
vertebrates, and cause mor-
tality due to the collapse 
of shelf ice along the shore 
onto fish below (Johnson 
1994). Although rapid 

reductions in flows during winter can negatively affect fish, enhanced 
flows appear to have less of an effect, causing fish to shift in their habi-
tat use but not stimulating long movements (Heggenes 1988; Simpkins 
et al. 2000c; Brown et al. 2001). Effects of hydropower peaking during 
winter on juvenile salmonids have been studied in artificial streams 
and rivers (Bradford et al. 1995; Saltveit et al. 2001; Scruton et al. 
2005; Enders et al. 2008), but there is little information regarding the 
cumulative effects on incubating embryos or adult fish. In general, slow 
changes in discharge within the natural range of variation are needed 
to avoid negative impacts on juvenile salmonids (Bradford et al. 1995; 
Enders et al. 2008).

Dams, as well as culverts, dewatering of stream reaches, and altera-
tion of stream channels, can also provide barriers to fish movements, 
impeding movements among habitats needed during winter or sum-
mer, or for spawning, or rearing of young across a watershed or river-
scape (Northcote 1997; Fausch et al. 2002). For example, Sanderson 
and Hubert (2009) found that water diversion structures prevented 

Diverse habitats, however, including 
deep pools with low water velocities, 
coarse rock substrate, and abundant 
cover, as well as side channels and 

backwaters, increase the probability 
of survival of overwintering fish. 
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adult cutthroat trout who wintered in the mainstem of the Salt River 
in Wyoming from accessing many tributary streams flowing from sur-
rounding mountains with high-quality spawning and rearing habitat. 
Reductions in the area of available habitat due to anthropogenic 
fragmentation may lead to a loss of habitat complexity and decline 
in life history variations important to stream-dwelling fish (Rieman 
and McIntyre 1993; Schlosser and Angermeier 1995). 

Thermal discharge
Thermal discharges from electrical-generating plants and industrial 

and municipal sources can affect winter habitat in ways similar to reser-
voirs by preventing surface ice formation and providing opportunities 
for frazil ice episodes in downstream reaches. Additionally, thermal dis-
charges during winter can cause fish to aggregate in the effluent plume 
where demands on energy reserves may be greater than in colder 
waters. The physiological effects of residence in thermally-enhanced 
areas during winter have not been widely studied, but at least one study 
suggests that reproduction may be negatively affected by such behavior 
(Cooke et al. 2004). Aggregation of fish in areas with point sources 
of both warmer water and contaminants can expose them to higher 
levels of contaminants than might otherwise be experienced.

Sedimentation
Sedimentation, both from natural and anthropogenic sources, can 

lead to a decrease in both the quantity and the quality of fish habitat 
during winter (Cunjak 1996). Fine sediment can fill the interstitial 
spaces among rocks reducing the amount of habitat for small fish 
which hide in the substrate (Griffith and Smith 1993; Linnansaari 
et al. 2009). In addition, fine sedimentation can decrease water 
flow though redds during winter, reducing the survival of salmonid 
embryos (Chapman 1988; Levasseur et al. 2006). 

Instream improvement 
structures

Instream structures have been widely used to improve or restore 
habitat for fluvial salmonids (Platts and Rinne 1985; White 1996). 
Instream structures are generally built to enhance pool habitat, but 
little is known about habitat associated with such structures during 
winter (Nickelson et al. 1992). Barrineau et al. (2005) assessed two 
types of instream structures (i.e., log-plunge and diagonal-boulder weir 
structures) constructed on a low-gradient reach of a mountain stream 
and found substantial differences in the quality of winter habitat 
formed by the two structures. Moreover, they observed that the habitat 
formed by instream structures in stream segments affected by ground-
water sustained serious impacts from frazil ice and anchor ice during 
winter. Their research indicated that managers need to understand the 
thermal dynamics of a stream before constructing instream structures 
intended to benefit salmonids during winter. Groundwater areas may 
provide stable overwintering habitat in reaches near the source, but 
contribute to unstable ice conditions downstream and unsuitable over-
wintering habitat for fish in these reaches. If winter habitat is to be 
improved, reaches downstream from warm groundwater input need to 
be identified before such habitats are altered, and calculations or obser-
vations should be made to ensure that frazil ice and anchor ice during 
winter does not occlude habitat formed by instream structures. 

Summary
During winter, fish are vulnerable to numerous threats to their 

survival. Protecting or creating suitable winter habitat in temperate 
climates is critical because fish spend a large part of the year in these 
habitats. Both freeze-up and ice break-up are especially dynamic times 
when ice can cause riverine habitats needed by fish to be unstable and 
movement routes to be blocked. Diverse habitats, however, includ-
ing deep pools with low water velocities, coarse rock substrate, and 
abundant cover, as well as side channels and backwaters, increase the 
probability of survival of overwintering fish. The inflow of relatively 
warm groundwater into the water column can be an important factor 
affecting winter habitat, and can either enhance or diminish winter 
habitat quality for stream-dwelling fish. Understanding the influences 
of groundwater, industrial or municipal effluents, or upstream reservoirs 
on winter water temperatures and ice dynamics in downstream reaches 
is critical to successful preservation or creation of suitable winter habi-
tat. Research is needed on habitat needs of fish during winter to ensure 
preservation of these habitats and to ensure that suitable habitats are 
created when fisheries managers make habitat improvement efforts. To 
date, most habitat preservation and improvement efforts have focused 
on habitats used from spring through fall, with little consideration or 
understanding of the influence of winter on these habitats. Considering 
the length of winter and the vulnerability of fish during winter, a much 
broader effort to understand, preserve, and improve winter habitats is 
warranted. a
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