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Quantifying 87Sr/86Sr temporal stability and spatial
heterogeneity for use in tracking fish movement
Lindsy R. Ciepiela and Annika W. Walters

Abstract: The specificity and accuracy of inferred fish origin and movement relies on describing spatial heterogeneity and
temporal stability of environmental signatures. But the cost and logistics of sample collection often precludes the complete
quantification of environmental signature temporal stability and spatial heterogeneity. We used repeated sampling and a novel
approach (Bayesian ridge regression, BRR) to quantify the temporal stability and spatial heterogeneity of 87Sr/86Sr, respectively.
We explained 86% of observed variation in 87Sr/86Sr using a BRR model and estimated 87Sr/86Sr throughout the Upper North Platte
River Basin with high accuracy (±0.00106). Year to year variation in 87Sr/86Sr signatures ranged from 0.00007 to 0.00073 (SD),
while seasonal variation ranged from 0.00091 to 0.00134 (SD). We then assessed the specificity and discussed the accuracy of
inferring movement using three scenarios of described spatial heterogeneity. Our results indicate reliable inference of fish
movement requires comprehensive quantification of spatial heterogeneity and temporal variation in environmental signatures.

Résumé : La spécificité et l’exactitude de l’origine et des déplacements inférés de poissons reposent sur la description de
l’hétérogénéité spatiale et de la stabilité temporelle de signatures environnementales. En raison du coût et de la logistique du
prélèvement d’échantillons, il est souvent impossible d’arriver à une quantification exhaustive de ces facteurs. Nous utilisons
l’échantillonnage répété et une nouvelle approche (la régression ridge bayésienne, RRB) pour quantifier, respectivement, la
stabilité temporelle et l’hétérogénéité spatiale du rapport 87Sr/86Sr. Nous expliquons 86 % de la variation de 87Sr/86Sr observée en
utilisant un modèle de RRB et estimons 87Sr/86Sr à la grandeur du bassin supérieur de la rivière North Platte avec une exactitude
élevée (±0,00106). La variation interannuelle des signatures de 87Sr/86Sr va de 0,00007 à 0,00073 (ÉT) et la variation saisonnière,
de 0,00091 à 0,00134 (ÉT). Nous évaluons ensuite la spécificité et abordons l’exactitude des déplacements inférés en utilisant trois
scénarios d’hétérogénéité spatiale décrite. Les résultats indiquent que l’inférence fiable des déplacements de poissons nécessite
la quantification exhaustive de l’hétérogénéité spatiale et de la variation temporelle de signatures environnementales. [Traduit
par la Rédaction]

Introduction
Fish move 10s–1000s of kilometres to satisfy physiological re-

quirements such as spawning, feeding, and growth (Gross et al.
1988; see Binder et al. 2011). Knowing fish origin, their migration
routes, and the habitats associated with their growth and repro-
duction is fundamental to the successful conservation of desired
species and the control of undesired species (Munro et al. 2005;
Olden et al. 2006; see Cooke et al. 2012). As such, considerable
effort has been put forth to develop techniques that allow for the
tracking of fish movement (Lucas and Baras 2000). Studies that
have used artificial tagging techniques, such as passive integrated
transponder tags, radio transmitters, and visible implant elasto-
mer marks, have contributed to our understanding of fish spatial
ecology (Achord et al. 2007; Hutchison et al. 2008). Yet our under-
standing of fish movement has been limited due to logistical
difficulties in tagging juvenile fish, recovering long-distance mi-
grants, and monitoring movement through time (Young et al.
1997; Kanno et al. 2014).

Over the last two decades, technological advances in methods
for analyzing otolith microchemistry have allowed researchers to
overcome many of the limitations of conventional tagging tech-
niques for assessing fish movement (see Elsdon et al. 2008). By
analyzing environmental signatures across a fish’s otolith and

matching signatures to surface water environmental signatures,
researchers can reconstruct the environmental history of all life
stages of fishes over large spatial and temporal scales. Studies that
use otolith microchemistry have identified essential habitat for
juvenile fish (e.g., Dorval et al. 2005; Brown 2006), characterized
within-population life history diversity (e.g., Zlokovitz et al. 2003;
Hodge et al. 2016), and identified the source of invasive species
(e.g., Munro et al. 2005; Whitledge et al. 2007).

Otolith microchemistry has increased our understanding of
fish movement dynamics and habitat needs, but is not without its
own set of assumptions and limitations (Elsdon et al. 2008). Studies
that use otolith microchemistry to trace movement are typically
based on at least two key assumptions — (i) detectable differences
in surface water environmental signatures occur on a scale rele-
vant to fish movement, and (ii) surface water environmental sig-
natures are temporally consistent. While these assumptions are
well recognized, budget and logistical constraints often limit full
quantification of spatial and temporal variation in environmental
signatures, especially given competing demands of a study (e.g.,
fish and water collections). Failure to capture environmental vari-
ation can influence the accuracy (i.e., the true stream the fish was
occupying is identified) and spatial resolution of inferred move-
ment histories. Therefore, there is a need to quantify the temporal
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stability of environmental signatures and develop cost-effective
methods to quantify the spatial variation of environmental signa-
tures.

In freshwater environments, water strontium isotope ratios
(87Sr/86Sr) are a useful environmental signature for reconstructing
environmental histories of fishes (Gibson-Reinemer et al. 2009).
87Sr/86Sr measured in otoliths are tightly correlated with 87Sr/86Sr
measured in ambient fresh waters (Barnett-Johnson et al. 2008;
Muhlfeld et al. 2012). 87Sr/86Sr in fresh waters, and thus otoliths,
are directly influenced by underlying watershed geology, with
variation in rock type, age, and weathering rates leading to spatial
heterogeneity of 87Sr/86Sr (Bataille and Bowen 2012; Bataille et al.
2014). Because 87Sr/86Sr signatures are tightly correlated with bed-
rock geology, modeling techniques that estimate 87Sr/86Sr from
bedrock geology and landscape variables are a promising, cost-
effective technique to quantify 87Sr/86Sr spatial heterogeneity
across a watershed (Hegg et al. 2013). For example, Brennan et al.
(2016) successfully used dendritic network models to estimate
strontium values within the Nushagak Basin, Alaska, with high
accuracy and spatial resolution.

The objectives of this research were to describe the temporal
stability of 87Sr/86Sr, develop a modeling technique to estimate
87Sr/86Sr, and assess the specificity (i.e., the number of tributaries
a fish is assigned too) and accuracy (i.e., whether a fish is assigned
to its true stream of origin) of inferring fish movement at different
levels of quantified 87Sr/86Sr spatial variation. We quantified
87Sr/86Sr temporal stability through repeated sampling of water
87Sr/86Sr. We used a machine learning algorithm, Bayesian ridge
regression (BRR), to estimate water 87Sr/86Sr signatures based on
bedrock lithology and landscape processes. We then compared
our results with those obtained using the spatial stream network
(SSN) modeling technique presented in Brennan et al. (2016). Fi-
nally, we used the above data to examine implications of inferring
fish movement at different levels of quantified 87Sr/86Sr spatial
variation.

Materials and methods

Study site
We developed 87Sr/86Sr models using surface water samples and

associated bedrock geology and landscape covariates from 17 pe-
rennial tributaries and the main stem of the North Platte River in
the upper 3600 km2 of the Upper North Platte River (UNPR) Basin
(refer to online Supplementary material, Fig. S11). The North Platte
River originates at the confluence of Little Grizzly and Grizzly
creeks in Colorado, USA, and flows northwest into Wyoming
through the Saratoga Valley where its tributaries drain the Medi-
cine Bow Mountains to the east and the Sierra Madre Mountains to
the west. Snowmelt is the main water source during peak springs
flows, while groundwater inputs maintain base flows throughout
the fall and winter.

The Sierra Madre and Medicine Bow mountains are geologically
similar. Both ranges contain a major shear zone, the Cheyenne
belt, which separates the oldest Archean rocks to the north from
the younger igneous and metamorphic rocks to the south (Taucher
et al. 2013). Notably, the Medicine Bow Mountains, unlike the Sierra
Madre Mountains, contain a thick band of metasedimentary rocks
that form the Snowy Range (Taucher et al. 2013).

Surface water samples
We collected water samples at 59 locations between June and

October 2015 (Fig. 1, Fig. S11). Each of the 17 tributaries had one to
five collection locations, and the North Platte River had nine col-
lection locations. We limited our sampling locations to water-
sheds greater than 6 km2 and stratified collection locations

longitudinally along tributaries to encompass variation in under-
lying geology and stream network dynamics.

We collected water samples in 250 mL Nalgene high-density
polyethylene bottles and stored samples in a ziplock bag. Within
48 h of collection, we filtered samples through a 0.45 �m sterile
syringe filter into a 125 mL Nalgene high-density polyethylene
bottle. Samples were transported to the University of Wyoming
and refrigerated until analysis. To evaluate error in field collec-
tion and filtration methods, we collected six of the samples as
field triplicates. At each triplicate sampling location, we took a
blank sample using ultrapure water. We precleaned all sample
bottles and filtration equipment by washing equipment in a
1.2 mol·L–1 HCl acid bath for at least 12 h followed by three ultra-
pure water rinses.

We assessed year to year variation of strontium isotope ratios by
comparing water samples collected during August base flows in
2009, 2014, and 2015 at one site each on French Creek, Big Creek,
Douglas Creek, and the Encampment River and three sites on the
North Platte River. We assessed seasonal variation of strontium
isotope ratios by comparing water samples collected at one site
each on French and Big creeks in June, August, and October 2015
and May 2016. Our May sampling event occurred during snowmelt-
dominated spring run-off, and our October sampling event oc-
curred during groundwater-dominated base flows, with the June
and August sampling events occurring during the transition be-
tween run-off and base flow. We quantified seasonal variation in
French and Big creeks because they represented the range of sea-
sonal variation we expected throughout the basin. French Creek
drains the Medicine Bow Mountains, and Big Creek drains the
Sierra Madre Mountains.

87Sr/86Sr analysis
The 2009 water samples were collected by Wyoming Game and

Fish Department and analyzed for 87Sr/86Sr and [Sr] at the Univer-
sity of California, Davis, Interdisciplinary Center of Plasma Mass
Spectrometry. Two of 14 water samples were ran as duplicates.
Duplicate sample analysis revealed a mean ±2 standard deviations
(SDs) of 0.0001. The NIST SRM987 standard (87Sr/86Sr = 0.71034 ±
0.00026 95% confidence interval (CI); www.nist.gov) was used to
monitor machine drift. During analysis, mean within-run internal
error was ±0.000026 (2 standard errors (SEs)).

We sent water samples from 2014 to 2016 to the University of
Utah, Department of Geology and Geophysics, Strontium Isotope
Laboratory for 87Sr/86Sr and [Sr] analysis where they were analyzed
using methods outlined in Brennan et al. (2015). Briefly, water
samples were analyzed for 87Sr/86Sr ratios using multicollector
inductively coupled plasma mass spectrometry (Thermo Scientific,
High Resolution NEPTUNE, Bremen, Germany) with online puri-
fication system (using Sr-spec resin, Eichrom Technologies Inc.)
for 87Sr/86Sr analysis of aqueous solutions. Long-term replicability
of the NIST SRM987 (87Sr/86Sr = 0.71034 ± 0.00026 95% CI;
www.nist.gov) is 87Sr/86Sr = 0.71030 ± 0.00004 (2 SD) (Brennan et al.
2015). During water sample analysis, the weighted daily mean
(±2 SD) of the NIST SRM987 ratio was 0.71029 ± 0.000033 (n = 5).
Field triplicate analysis revealed a mean ±2 SD of 0.000055.

For comparison of water samples between labs, we normalized
all samples to the NIST SRM987 standard using the following
equation:

87Sr/86Sr normalized � � Sp

Sm
� × 87Sr/86Sr

where Sp is the published standard value, and Sm is the average
measured standard value.

1Supplementary data are available with the article through the journal Web site at http://nrcresearchpress.com/doi/suppl/10.1139/cjfas-2018-0124.
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Fig. 1. Surface water 87Sr/86Sr were estimated across the Upper North Platte River Basin using a Bayesian ridge regression model. Solid circles
indicate sampling locations. This map was created using ArcGIS software by Esri. [Colour online.]

!(

!(

!(

!(!(!(

!(

!(!(!(!(

!(
!(

!(

!(

!(

!(

!(

!(!(!(!(

!(

!(

!(
!(

!(

!(

!(
!(

!(

!(

!(

!(

!(

!(!(!(

!(

!(!(!(

!(!(!(

!(!(!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(!(

!(

!(

!(!(!(

!(

!(!(!(

!(

!(

!(

!(

!(

!(

!(!(!(!(!(

!(

!(

!(

!(!(!(!(!(

!(

!(

!(

!(!(

!(

!(

!(

!(
!(

!(!(

!( !(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(
!(

!(

!(

!(!(!(

!(!(!(

!(
!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

!(

107°0'0"W

107°0'0"W

41°0'0"N
41°0'0"N

±

Wyoming

Colorado

0 10 205 km

87Sr/86Sr    
0.7034 - 0.7057

0.7058 - 0.7081

0.7082 - 0.7105

0.7106 - 0.7129

0.7130 - 0.7153

0.7154 - 0.7177

0.7178 - 0.7201

0.7202 - 0.7225

0.7226 - 0.7249

0.7250 - 0.7273

930 Can. J. Fish. Aquat. Sci. Vol. 76, 2019

Published by NRC Research Press



87Sr/86Sr models
We built and compared 87Sr/86Sr BRR and SSN models and used

the BRR model to build a 87Sr/86Sr isoscape of the UNPR Basin for
watersheds greater than 6 km2. More details on BRR and SSN
models will follow in later sections. Prior to modeling, we split the
data into development and validation data sets. To establish our
validation data set, we randomly selected eight tributaries and
then randomly selected one sampling location on each of the
eight tributaries. The other 51 observations served as the develop-
ment data set.

The SSN model required a GIS referenced landscape network
that incorporated information on stream source, flow direction,
confluences, and stream outlets. Both modeling approaches re-
quired establishing and summarizing watershed bedrock lithology
and landscape covariates at observation and estimation locations
across the UNPR Basin. To establish stream network observation
and estimation locations, build the landscape network, and sum-
marize watershed covariates, we obtained a publicly available
stream network of the UNPR Basin from the NorWeST stream
temperature prediction effort (http://www.fs.fed.us/rm/boise/AWAE/
projects/NorWeST.html; Isaak et al. 2016). For both modeling ap-
proaches, we used the midpoint of each 1 km stream segment in
the NorWeST stream network as estimation locations. We se-
lected the midpoint of the NorWeST stream segment that our
observation points were located on to serve as our observation
locations; this resulted in a maximum shift in observed sampling
location of 0.5 km, but allowed us to incorporate covariates (i.e.,
slope and precipitation) embedded in the NorWest stream network.

To build the landscape network and delineate the upstream
watershed area for observation and estimation locations, we
obtained US Geological Survey digital elevation models (https://
viewer.nationalmap.gov) and integrated these with the NorWesST
stream network using the Spatial Tools for the Analysis of River
Systems (STARS) toolbox in ArcGIS 10.2 (Peterson and Ver Hoef 2014).

Lithology and landscape covariates
We used the STARS toolbox to calculate the percent area of each

rock type located upstream of every estimation and observation
point along the stream network. Predominant lithology designa-
tion was obtained from the Preliminary Integrated Geologic Map
Databases for the United States (https://mrdata.usgs.gov/geology/
state/; Stoeser et al. 2005). In addition to lithology, we selected
four landscape covariates (local relief, percent glaciated, average
slope, and accumulated precipitation) to include in our models
(for variable descriptions see Text S11; Mears 2001; Mckay et al.
2012; Brennan et al. 2016).

Bayesian ridge regression (BRR)
We used the development data set and the BRR algorithm with

tenfold cross-validation in the R version 3.3.0 (R Core Team 2016)
caret package (Kuhn 2017) to develop two sets of models (initial
and candidate). BRR algorithms use supervised learning (Olden
et al. 2008), through k-fold cross-validation, to model the relation-
ship between inputs and known outputs (Kuhn 2008). Because the
BRR algorithm, like many machine learning algorithms, relies on
supervised learning to tune model parameters, final model pa-
rameters will vary slightly with each run of the BRR algorithm. To
quantify how this variance impacts model output, we ran the BRR
algorithm 1000 times using covariates from the best-performing
model. We then ran the development and validation data sets
through the 1000 model iterations and calculated the SD of the r2

between modeled and observed 87Sr/86Sr and the SD of the resid-
ual SE. Also important to note is that the BRR algorithm in the
caret package requires centered and scaled predictors; therefore,
we scaled and centered all input variables prior to modeling
(Kuhn 2008).

Our initial model set (n = 4) incorporated predominant lithology
found at greater than 5%, 10%, 20%, or 25% in the watershed as

covariates. The candidate model set (n = 9) included all lithology
covariates from the best-performing initial model and different
combinations of landscape covariates (i.e., local relief, percent
glaciated, average slope, and accumulated precipitation).

To select the best-performing model, we applied all the models
to the validation data set and estimated 87Sr/86Sr at the eight
validation locations. We then regressed observed 87Sr/86Sr against
estimated 87Sr/86Sr and assumed the best-performing model was
the one that maximized the goodness of fit between observed and
estimated 87Sr/86Sr (for a complete list of candidate models, see
Tables S1–S21; for example code see Text S21).

We used the best-performing model in the candidate model set
to estimate 87Sr/86Sr at estimation locations in the stream net-
work. We assumed model error was equal to the SE of the absolute
difference between observed and estimated 87Sr/86Sr of the vali-
dation data set.

Spatial stream network (SSN) model
To compare the relative performance of the BRR model with

that of a SSN model, we developed a 87Sr/86Sr SSN model. We used
the development data set and the SSN package (Ver Hoef et al.
2014) in R version 3.3.0 (R Core Team 2016) to develop two sets of
models (initial and candidate). SSN model development largely
followed the methods outlined in Brennan et al. (2016). SSN mod-
els use a generalized linear mixed model framework that incor-
porates linear spatial relationships to model the relationship
between inputs and known outputs (Peterson et al. 2013).

Similar to above, our initial model set (n = 4) incorporated pre-
dominant lithology found at greater than 5%, 10%, 20%, or 25% in
the watershed as covariates. We ran the initial SSN model set with
an exponential tail-up (flow-connected) autocovariance function.
The candidate model set (n = 7) included all lithology covariates
from the best-performing initial model and different combina-
tions of landscape covariates and autocovariance functions. We
did not include accumulated precipitation because this informa-
tion was embedded in the SSN spatial weighting scheme. We used
AIC (Akaike information criterion) to compare models and select
the top model in each model set (Tables S3–S41).

Similar to Brennan et al. (2016), we based spatial weights of the
SSN on the product of modeled [Sr] (see Brennan et al. 2016 for
methods to model [Sr]) and accumulated precipitation. Unlike in
Brennan et al. (2016), we only considered exponential tail-up (flow-
connected) and Euclidian autocovariance functions for all candi-
date models because we did not observe spatial correlation for
flow-unconnected pairs (Fig. S21; Peterson et al. 2013).

Inferred fish origin
Using 87Sr/86Sr samples and the BRR 87Sr/86Sr isoscape, we de-

veloped three scenarios of described spatial heterogeneity to ex-
amine the implications of inferring fish origin at increasing scales
of described spatial 87Sr/86Sr heterogeneity. In scenario A, we used
one 87Sr/86Sr sample from each of the 17 UNPR tributaries (col-
lected near the confluence). In scenario B, we increased the de-
scribed spatial heterogeneity by incorporating all 48 87Sr/86Sr
samples collected at one to five locations in the 17 tributaries. In
scenario C, we again increased the described spatial heterogeneity
and used estimated 87Sr/86Sr values from the BRR strontium
isoscape in the 17 tributaries. For all scenarios, we defined each
site by a uniform distribution. In scenarios A and B, the width of
the uniform distribution was equal to the maximum observed
year to year variability (±SD 0.00073). In scenario C, the width of
the uniform distribution was equal to the BRR model error. BRR
model error was equal to the SE of the absolute difference be-
tween observed and estimated 87Sr/86Sr of the validation data set
(±0.00106). We did not explicitly incorporate temporal variation in
scenario C because model error was larger than the observed
temporal variation, thus overwhelming temporal variation.
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We then created a hypothetical otolith 87Sr/86Sr data set (100
equally spaced 87Sr/86Sr values across the strontium gradient) and
assessed the number of tributaries that each sequenced 87Sr/86Sr
value overlapped for the three scenarios of described spatial het-
erogeneity. We considered a site, and thus a tributary, as a poten-
tial fish origin if the hypothetical otolith value fell within the
bounds of a site’s uniform distribution.

Results
87Sr/86Sr temporal variation

We observed both seasonal and year to year variation in 87Sr/
86Sr, with greater seasonal variation than year to year variation
(Fig. 2). In French and Big creeks, the maximum observed differ-
ence in 87Sr/86Sr between seasons (0.00318 and 0.00214, respec-
tively) was higher than between years (0.00081 and 0.00127,
respectively). Year to year variation in 87Sr/86Sr signatures was
largest for Big Creek (0.71422 ± 0.00073) and smallest for the North
Platte River (0.71207 ± 0.00006). The mean SD in strontium isotope
ratios between seasons was 0.00134, while between years it was
0.00031. When samples from the North Platte River were ex-
cluded, the mean SD between years increased to 0.00047.

87Sr/86Sr models

BRR
The top BRR model for estimating 87Sr/86Sr throughout the

UNPR Basin included all rock types found at greater than 10% in
any watershed and accumulated precipitation (Fig. 1; Table S21). In
this model the covariates explained 86.85% (SD 0.03) of the varia-
tion in 87Sr/86Sr of the development data set. The r2 between mod-
eled and observed 87Sr/86Sr of the development and validation
data sets was 0.93 (SD 0.0006) and 0.90 (SD 0.0056), and the resid-
ual standard error was 0.00098 (SD 0.00004) and 0.00173 (SD
0.00004), respectively (Fig. 3). Model error was equal to ±0.00106.

SSN model
The top SSN model for estimating 87Sr/86Sr throughout the

UNPR Basin included all rock types found at greater than 10% in
any watershed and average slope (Table S41). In this model the
fixed effects explained 79% of the variation in 87Sr/86Sr, and the
tail-up autocovariance explained 20% of the variance. Using the best
model, the r2 between the modeled and observed 87Sr/86Sr of the
development and validation data sets was 0.74 and 0.89 and the
residual SE was 0.00203 and 0.00228, respectively (Fig. 3). Model
error was equal to ±0.00086.

Inferred fish origin
Increasing described strontium spatial heterogeneity revealed

large longitudinal variation within tributaries and large overlap
in 87Sr/86Sr between tributaries (Fig. 4). Accounting for temporal
and longitudinal variation along tributaries increased the num-
ber of tributaries a hypothetical fish overlapped in 87Sr/86Sr signa-
tures (Fig. 4). In scenario A, we accounted for temporal variation
but did not account for longitudinal variation, and fish shared a
87Sr/86Sr signature with zero to four tributaries. In scenario B, we
accounted for both temporal and longitudinal variation, and fish
shared a 87Sr/86Sr signature with zero to seven tributaries. In sce-
nario C, we used continuous estimated 87Sr/86Sr to quantify lon-
gitudinal variation, and fish shared a 87Sr/86Sr signature with zero
to ten tributaries. In scenario C, we did not explicitly account for
temporal variation because model error was greater than ob-
served temporal variation and absorbed the influence of temporal
variation on the accuracy of inferred fish movement.

Discussion
87Sr/86Sr temporal variation

We observed higher site-specific 87Sr/86Sr seasonal variation
than site-specific 87Sr/86Sr year to year variation, as was also seen
by Kennedy et al. (2000) and Crook et al. (2017). But the degree of
temporal stability varied by orders of magnitude from stable to
unstable across watersheds. Kennedy et al. (2000) reported that
the largest seasonal difference in 87Sr/86Sr observed at any one site
in the Connecticut River Basin, Vermont, was 0.00035. The largest
seasonal difference we observed was 0.00318, in French Creek. The
largest seasonal difference Crook et al. (2017) reported was 0.05155
on the Edith River in the wet–dry tropics of northern Australia.
Crook et al. (2017) suggested changes in the source water (ground
versus runoff) between the two extreme wet–dry seasons likely
drove observed extreme seasonal variability. We hypothesize a
similar mechanism is driving our observed seasonal variability.
The UNPR Basin is snowmelt-driven with snowmelt runoff con-
tributing to most flow in the spring and ground water dominating
flow during the fall and winter (Miller et al. 2014). Future studies
should work to understand the relationship between temporal

Fig. 2. Surface water 87Sr/86Sr seasonal variation (A) was higher than
surface water 87Sr/86Sr year to year variation (B). Refer to Materials
and methods for description of sampling sites.

Fig. 3. Model performances of the Bayesian ridge regression model
(BRR) (A) and the spatial stream network model (SSN) (B) were
comparable. Observed versus estimated 87Sr/86Sr values were plotted
for both development and validation data sets. The solid lines are
the 1:1 lines between observed strontium isotope ratios and
estimated strontium isotope ratios.
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stability and variation in water inputs across climatic and geologic
settings to identify regions where repeated sampling, to quantify
temporal stability, is mandated and where assumptions of tempo-
ral stability hold true.

87Sr/86Sr models
Developing 87Sr/86Sr models to create stream 87Sr/86Sr isoscapes

is a new and developing research area. Our BRR modeling ap-

proach and the SSN modeling approach, presented in Brennan
et al. (2016) and applied in Brennan and Schindler (2017), to build-
ing 87Sr/86Sr isoscapes are, to date, the most accurate models to
estimate 87Sr/86Sr patterns in streams. But, until now, large uncer-
tainty remained in the generalizability and accuracy of these ap-
proaches across geologic formations and geographic locations
because they had not been applied outside of the Nushagak Basin.

Fig. 4. Increasing the described spatial variation of surface water 87Sr/86Sr (I and II, scenarios A–C) increased the number of tributaries a
hypothetical fish shared an environmental signature with (III). Inferring fish movement using a single sample on each tributary (scenario A)
resulted in high specificity (few tributaries overlapped with the hypothetical fish’s environmental signature), but likely low accuracy (the true
stream of origin was not identified). Inferring fish movement using on the ground sampling, which incorporated longitudinal variation
(scenario B), resulted in intermediate specificity and likely higher accuracy. Using modeled, continuous 87Sr/86Sr to describe longitudinal
variation (scenario C) resulted in low specificity and likely similar accuracy to that of scenario B. Panel I shows the water 87Sr/86Sr samples
used to develop each scenario, panel II shows the spatial distribution of the water samples, and panel III shows the number of tributaries
hypothetical otoliths, along the strontium gradient, overlapped with, for each scenario. [Colour online.]
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Our results indicate publicly available stream network and li-
thology data can be used by researchers to build generalizable SSN
and BRR models that perform well when estimating 87Sr/86Sr.
Both models had high model performance (r2 of BRR and SSN
validation data set modeled versus observed ratios = 0.90 and 0.89,
respectively). Brennan et al. (2016) obtained similar SSN model
performance when estimating 87Sr/86Sr in the Nushagak Basin,
Alaska (r2 of modeled versus observed ratios = 0.90). Both the BRR
and SSN models estimated strontium isotope ratios with similar
overall model error (BRR = ±0.00106; SSN = ±0.00086); however,
model error was not consistent across the strontium gradient, and
the region of highest model error was not consistent between the
two models. The BRR model error was highest at high 87Sr/86Sr
values, and the SSN model error was highest at intermediate 87Sr/
86Sr values.

Differences in the magnitude of the model error across the
strontium gradient and between the two modeling approaches
was likely due to an interaction between the different statistical
approaches and the geologic maps used. SSN models use a gener-
alized linear mixed model framework that incorporates linear
spatial relationships (Peterson et al. 2013), and BRR models use
supervised learning (Olden et al. 2008) to model the relationship
between inputs and known outputs. Because SSN models rely on
linear spatial relationships, they have the distinct advantage of
estimating spatially explicit 87Sr/86Sr estimation error (i.e., esti-
mation locations closer to sampling locations will have smaller
estimation error, while estimation locations farther from sam-
pling locations will have larger estimation error), an important
aspect when partitioning out sources of variance to probabilisti-
cally infer fish movement (see Brennan and Schindler 2017).
Therefore, when modelers seek to partition out sources of vari-
ance, we recommend developing an SSN model. When partition-
ing out sources of variance is not necessary, we recommend
developing a BRR model with the caret package (Kuhn 2017; for
example code see Text S21), because it is computationally simpler
as it does not require a GIS-referenced landscape network and the
modeling of [Sr] prior to modeling 87Sr/86Sr. Because developing a
BRR model is simpler, it may also serve as a powerful preliminary
analysis tool to detect whether there is sufficient 87Sr/86Sr varia-
tion to justify a large-scale study.

Both modeling approaches relied on geologic maps that were
created to provide standardized geologic data based on state-scale
geologic lithology (Stoeser et al. 2005). These maps were not cre-
ated to inform 87Sr/86Sr signatures; as such, some lithology desig-
nations may have been too broad to inform underlying 87Sr/86Sr
variation. Hegg et al. (2013) found, when clustering rocks into five
main rock type groups, that broad rock type classifications ob-
scured underlying 87Sr/86Sr variation in some watersheds. While
BRR and SSN models do not require clustering rock types, an
improvement over Barnett-Johnson et al. (2008) and Hegg et al.
(2013), it is likely some rock groupings, like metasedimentary
rocks, were still too broad to inform variation in 87Sr/86Sr signa-
tures, ultimately leading to the observed variable estimation errors.

The size of model error is currently the primary analytical lim-
itation when using modeled 87Sr/86Sr to describe 87Sr/86Sr spatial
heterogeneity across a stream network. In watersheds that con-
tain small differences between tributary signatures, the model
error associated with each estimation point may disguise true
differences. Increasing the sample size and spatial representation
of input data and using finer detailed bedrock geology maps
would likely decrease model error within and between models.
But, it is important to note, the degree to which decreasing model
estimation error will improve described 87Sr/86Sr spatial hetero-
geneity, and our ability to infer origin is not limitless. Irrespective
of model error, described 87Sr/86Sr spatial heterogeneity will
remain bounded by analytical precision and natural temporal
variability. Additionally, the spatial resolution of inferred fish

movement is fundamentally restricted by the natural spatial dis-
creteness of environmental signatures (see Elsdon et al. 2008).

Inferred fish origin
Increasing described spatial heterogeneity of 87Sr/86Sr signa-

tures in the UNPR Basin likely increased the accuracy (the true
stream of origin shared an overlapping signature with the fish)
but decreased the specificity (many tributaries overlapped with
the hypothetical fish’s environmental signature) of a hypothetical
fish’s inferred movement. Using a single sample on each tributary
to describe 87Sr/86Sr spatial heterogeneity resulted in a maximum
of four tributaries overlapping with a hypothetical fish’s 87Sr/86Sr
signature. Without knowledge of longitudinal variation, it would
be tempting to assign the hypothetical fish to one of these four
tributaries. But in a connected stream network, where fish can
move freely throughout the network, it would be inaccurate to
assume a fish stayed at the confluence of the tributary and thus
inappropriate to exclude longitudinal variation. Incorporating
observed and modeled longitudinal variation increased the max-
imum number of tributaries with overlapping 87Sr/86Sr signatures
to seven and ten tributaries, respectively. Our results indicate
neglecting to incorporate longitudinal variation may lead to spe-
cific but inaccurate inferred fish origin.

Alarmingly, many otolith microchemistry studies have neglected
to investigate spatial heterogeneity on multiple scales, thus failing
to incorporate longitudinal variation (Elsdon et al. 2008). Elsdon
et al. (2008) suggests using a nested sampling design to ensure
variation in environmental signatures is described at the scale
being investigated, and there is a rapidly growing body of litera-
ture to support using a continuous approach to isotope-based
inferred origin–movement (i.e., BRR and SSN) to improve the
accuracy of inferred movement (Wunder 2010; Brennan and
Schindler 2017), and our results highlight the importance of
doing so.

Conclusions
The specificity, and likely the accuracy, of inferred fish origin

jointly depended on the quantification of 87Sr/86Sr spatial hetero-
geneity (at a scale that is relevant to fish movement) and the
spatial and temporal discreteness of 87Sr/86Sr. The BRR model
presented in this paper is a promising, novel approach to describing
the full continuous spatial heterogeneity of 87Sr/86Sr signatures and
compares well with the SSN modeling technique presented in
Brennan et al. (2016). Both BRR and SSN modeling techniques are
not region-specific and can be applied to any watershed.

Assigning fish to 87Sr/86Sr isoscapes, developed through BRR
and SSN modeling approaches, represents a powerful improve-
ment over classic assignment methods, such as those presented in
Wells et al. (2003), which rely on cluster analysis for origin assign-
ment. Describing the continuous spatial heterogeneity of 87Sr/86Sr
not only alleviates potentially unnatural groupings created by
clustering data, it provides a detailed map of potential environ-
mental signatures that can transfer to a detailed map of fish move-
ment. However, it is important to note that in watersheds like the
UNPR Basin, where spatial discreteness in 87Sr/86Sr signatures be-
tween tributaries is low, specificity of inferred fish origin will be
low due to the error associated with estimated 87Sr/86Sr values.
Future studies should consider both the spatial and temporal dis-
creteness of their watershed and work to describe the full spatial
heterogeneity and temporal stability of 87Sr/86Sr prior to inferring
fish origin.
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