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Abstract

Global wildfire regimes are changing rapidly, with widespread increases in the
size, frequency, duration, and severity of wildfires. Whereas the effects of wild-
fire on ecological state variables such as occupancy, abundance, and species
diversity are relatively well documented, changes in population vital rates
(e.g., survival, recruitment) and individual responses (e.g., growth, movement)
to wildfire are more limited because of the detailed information needed on the
same individuals both pre- and post-fire. We capitalized on the 2018 Roosevelt
wildfire, which occurred during our 6-year (2015-2020) capture-mark-recapture
study of boreal toads (Anaxyrus boreas boreas; n = 1415) in the Bridger-Teton
National Forest, USA, to evaluate the responses of population vital rates and indi-
vidual metrics to wildfire. We employed robust design capture-recapture models
to compare the growth, dispersal, survival, and recruitment of adult boreal toads
pre- and post-fire at burned versus unburned sites. At burned locations, growth
increased 2 years post-fire compared with the year directly following wildfire and
was higher 2 years post-fire than any other interval during our study period.
Boreal toads dispersed to alternative breeding patches more at burned sites than
unburned sites and dispersal increased 2 years post-fire compared with the year
directly following wildfire. Annual survival and recruitment neither differed
between pre- and post-fire years nor among pre-fire years, the year following wild-
fire, and 2 years post-fire. We demonstrate that, in certain contexts, dispersal can
play a major role in changes to state variables (e.g., abundance) after wildfire, as
opposed to other vital rates such as survival and recruitment. Our study represents
an important step toward understanding the biological processes that underlie
observed patterns in state variables following wildfire, which ultimately will be
critical for the effective management of species in landscapes experiencing shifts
in fire activity.
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INTRODUCTION necessitate detailed information on known individuals

Environmental disturbances play a central role in struc-
turing ecological communities (Connell, 1978; Sousa,
1984). Human activity is causing rapid changes to global
disturbance regimes, and the current knowledge of spe-
cies responses to disturbance events may not accurately
reflect how these effects manifest under future conditions
(Johnstone et al., 2016; Turner, 2010). For instance, wild-
fire can be an important natural disturbance in many sys-
tems that promote biodiversity, landscape heterogeneity,
and ecosystem services (Driscoll et al., 2010; van Wilgen
et al., 1996). However, the size and frequency of wildfires
have increased rapidly in recent decades (Dennison
et al., 2014; Littell et al., 2009; Westerling, 2016), exceed-
ing the limits of historical fire regimes (Kasischke &
Turetsky, 2006; Kelly et al., 2013). Anthropogenic influ-
ences, such as human-induced climate change, moreover,
are expected to continue to increase the number of large
wildfires and the duration of fire season across the west-
ern United States and other temperate forest biomes
(Abatzoglou & Williams, 2016; Krawchuk et al., 2009;
Liu et al., 2010; Sommerfeld et al., 2018). Careful study of
how organisms respond to wildfire will therefore be criti-
cal for the effective management of species in landscapes
experiencing shifts in fire activity.

Wildlife studies would ideally assess the effects of wildfire
using a before-after/control-impact (BACI; Stewart-Oaten
et al., 1986; Underwood, 1992) approach, whereby pre- and
post-fire metrics are compared at burned (impact) versus
unburned (control) sites, or across sites with varying
degrees of burn severity (e.g., Smucker et al., 2005; Vieira
et al., 2004). Pre- and post-fire comparisons using the
BACI design are relatively common for ecological state vari-
ables, such as changes in abundance/density (Converse
et al, 2006; Duarte et al., 2017; Sestrich et al., 2011),
occupancy/distribution (Dunham et al., 2007; Hossack &
Corn, 2007; Jones et al., 2016; Sestrich et al., 2011), and
species diversity/community composition (Brehme et al.,
2011; Brown et al., 2015; DiCarlo et al., 2019; Pastro
et al,, 2011). By contrast, changes in population vital rates
(e.g., survival, recruitment) and individual responses (e.g.,
growth, dispersal) to wildfire are seldom studied. The
biological processes underlying observed patterns in state
variables are therefore often unknown.

Documenting vital rates and individual responses to
disturbances such as wildfire is rare because comparisons

both pre- and post-fire. Because of the logistical difficul-
ties and unpredictability of wildfires, most studies are
opportunistic and capitalize on being in the “right place at
the right time” (Gade et al., 2019; Smucker et al., 2005). To
capture vital rates and individual responses, wildfires must
therefore occur by chance during the middle of studies that
collect data on the same organisms through time, such as
intensive capture-mark-recapture efforts (e.g., Rockweit
et al., 2017; Webb & Shine, 2008).

We capitalized on the 2018 Roosevelt wildfire, which
occurred during our 6-year (2015-2020) capture-mark--
recapture study of boreal toads (Anaxyrus boreas boreas)
in the Bridger-Teton National Forest in western
Wyoming, United States. Whereas the fire burned some
of our study sites with high severity, other sites remained
unburned such that we were able to use a BACI design to
examine the responses of population vital rates and indi-
vidual metrics to wildfire. Such work is timely, as
amphibians are currently the most threatened vertebrate
class globally (Catenazzi, 2015) and many species evolved
in landscapes projected to experience shifts in wildfire
regimes (Hossack & Pilliod, 2011). For instance, although
low-severity fires maintain diverse amphibian communi-
ties in fire-adapted ecosystems (Means, 2006; Russell
et al., 1999), the implications of high-severity fires are
poorly understood (Bury, 2004; Pilliod et al., 2003). Given
that most amphibians are moisture-sensitive, many spe-
cies may be particularly vulnerable to the dry conditions
resulting from high-severity fires (Hossack, Lowe, &
Corn, 2013). Lastly, whereas responses in state variables
such as occupancy, abundance, and species diversity are
well documented in amphibians (Brown et al., 2014;
Chelgren et al, 2011; Hossack & Honeycutt, 2017;
Rochester et al., 2010), changes in vital rates and individual
metrics in response to wildfire remain poorly documented.

We investigated population vital rates and individual
responses of adult boreal toads to a large wildfire.
Specifically, we compared pre- and post-fire changes in body
mass (hereafter, growth) and rates of dispersal, survival, and
recruitment at sites that burned with high severity and
nearby sites that were unburned. We did not expect direct
mortality from fire, as amphibians can often retreat under-
ground or seek aquatic refuges (Friend, 1993; Pilliod
et al., 2003). Rather, we expected the effects of wildfire to
manifest indirectly via changes to habitat conditions and
quality (Hossack & Pilliod, 2011). For instance, post-fire
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landslides and other sedimentation events can reduce breed-
ing habitat in highly aquatic species (Backlin et al., 2004;
Parker, 2006), and changes to canopy/vegetation cover and
microclimate can negatively affect taxa that are sensitive to
disturbances such as plethodontid salamanders (Gade
et al., 2019; Rochester et al., 2010).

Boreal toads, by contrast, often respond positively to dis-
turbance (Crisafulli et al., 2005; Pearl & Bowerman, 2006),
prefer open habitats (Bull, 2006), and perform optimally at
relatively warm temperatures (e.g., maximal growth and
energy ingestion at ~27°C; Lillywhite et al., 1973). Indeed,
in western Montana, boreal toad occupancy increased
shortly after large wildfires (Hossack & Corn, 2007;
Hossack, Lowe, & Corn, 2013), and individuals preferred
severely burned areas to moderately burned forests (Guscio
et al., 2008). Boreal toad populations also display greater
genetic connectivity near the areas affected by wildfire than
the populations farther from burned areas (Murphy
et al, 2010), suggesting wildfire may increase landscape
connectivity and facilitate dispersal between subpopula-
tions. Furthermore, boreal toads are challenged with
Batrachochytrium dendrobatidis (Bd) in and near our study
area (Barrile, Chalfoun, & Walters, 2021a; Pilliod et al.,
2010), a fungal pathogen implicated in global amphibian
declines (Scheele et al., 2019). Following wildfire, boreal
toads found in warmer, recently burned areas (Hossack
et al., 2009) were significantly less likely to be infected with
Bd than toads in cooler, unburned areas (Hossack, Lowe,
Ware, & Corn, 2013). Warmer, drier microclimates after
wildfire may decrease the prevalence of the temperature-
and moisture-sensitive fungus in the environment and/or
provide opportunity for toads to clear infection via behav-
ioral fever (Barrile, Chalfoun, & Walters, 2021b). For all the
reasons stated above, we predicted that rates of growth,
dispersal, survival, and recruitment in boreal toads would
increase following wildfire in our study area.

METHODS
Study area

We studied boreal toads at four stream segments in the
Bridger-Teton National Forest, two in the northern
Wyoming Range (~1.1 km reach at Buck Creek and
~0.4 km reach at Chall Creek; 42°59' N, 110°24' W) and
two in the northern Wind River Range (~0.2 km reach at
Lower Gypsum Creek and ~0.3 km reach at Upper
Gypsum Creek; 43°16' N, 109°57 W) (Figure 1). Sites in
the Wind River Range were at slightly higher elevations
(Lower Gypsum Creek = 2509 m; Upper Gypsum
Creek = 2671 m) than Wyoming Range sites (Buck
Creek = 2487 m; Chall Creek = 2441 m). The landscape

was similar between the two ranges: both contained
mixed-conifer and aspen (Populus tremuloides) forests,
sagebrush (Artemisia tridentata) and subalpine meadows,
and riparian areas with willow (Salix spp.) complexes.
Beaver ponds were common in montane stream channels
and provided breeding habitat for boreal toads and other
amphibians.

Capture-mark-recapture surveys

Boreal toads congregate at breeding ponds shortly after
snowmelt in the spring (~mid-May) and continue
spawning through mid to late June. We conducted stan-
dardized visual encounter surveys to hand-capture toads at
breeding sites within our four stream segments at night dur-
ing the breeding season (May-June) in 2015-2020.
Captured individuals were sexed by the presence of dark-
ened nuptial pads on the thumbs of males, weighed using a
precision spring scale (Pesola 20100 micro-line balance;
Pesola Prézisionswaagen AG, Schindellegi, Switzerland),
and marked using passive integrated transponder tags
(8 x 1.2 mm FDX tag; Oregon RFID, Portland, OR, USA)
for individual identification. We tagged adult males only,
assuming individuals <15 g were juveniles. We excluded
female toads because they do not remain at breeding sites
post-amplexus and often skip breeding years (Muths
et al., 2010), both of which could bias demographic
estimates.

We sampled all active or abandoned beaver ponds
along each stream segment with signs of boreal toad
breeding (e.g., egg clutches, amplectant pairs), which
included four clustered ponds (i.e., four ponds in close
proximity) at both Buck and Chall creeks, and two and
three clustered ponds at Lower Gypsum and Upper
Gypsum Creeks, respectively (Figure 1c,d). We refer to
each cluster of ponds within our core study reaches as the
“primary site” (yellow circles in Figure 1c,d) because we
also surveyed at breeding ponds outside of our core study
area (see the Surveys at alternative sites section below) and
refer to those ponds as “alternative sites” (black circles in
Figure 1c,d). We surveyed all ponds within primary sites at
a given stream during each nighttime survey and conducted
multiple recapture surveys within each breeding season at
all streams (mean = 5 surveys per stream, per year;
range = 3-9).

Wildfire

On 15 September 2018, the Roosevelt wildfire ignited and
burned 24,893 ha of land, the majority of which was in
the Bridger-Teton National Forest. Whereas our study
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FIGURE 1 (a)Photograph of Buck Creek from August 2019 illustrating the influence of the Roosevelt wildfire on the overall
landscape, including the fire’s proximity to boreal toad breeding sites (e.g., pond located at center-right in the image). (b) Map displaying the
location of our four study streams: Buck (BK) and Chall (CH) creeks in the Wyoming Range and Lower Gypsum (LG) and Upper Gypsum
(UG) Creeks in the Wind River Range. Also pictured in (b) is the extent of the Roosevelt wildfire, including burn severity categories
developed by the Monitoring Trends in Burn Severity project. (c, d) Breeding ponds included in our capture-recapture surveys at (c) Buck
and Chall creeks and (d) Lower Gypsum and Upper Gypsum Creeks. Yellow circles represent primary sites within our core study area; black
circles represent alternative ponds outside our core study area.
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sites at Buck and Chall creeks burned (Figure 1a,b), sites
along Lower and Upper Gypsum Creeks were unburned
(Figure 1b). Furthermore, because all of our sites along
Buck and Chall creeks were in or within 100 m of
high-severity burns, as classified by the Monitoring Trends
in Burn Severity project (Eidenshink et al., 2007), we did
not differentiate among burn severities, but rather charac-
terized sites at Buck and Chall creeks as “burned” and sites
at Lower and Upper Gypsum Creeks as “unburned.”

Surveys at alternative sites

During the early spring of 2017, high snowmelt runoff
destroyed beaver dams within our core study reaches,
which degraded the quality of breeding habitat at many of
our primary sites (Barrile, Walters, et al., 2021). Because
boreal toad dispersal can increase following wildfire
(Hossack & Corn, 2007; Hossack, Lowe, & Corn, 2013), we
predicted that fire-induced habitat changes (e.g., increased
landscape permeability; Rochester et al, 2010) and/or
enhanced growth would provide individuals the opportu-
nity to depart low-quality breeding ponds (i.e., primary
sites) and colonize alternative breeding ponds (hereafter,
alternative sites) outside of our core study area (e.g., areas
with recent beaver activity). The process of dispersal typi-
cally is described as the unidirectional movement of an
individual from birth to its first breeding patch (i.e., natal
dispersal), or among successive breeding patches (i.e.,
breeding dispersal; Clobert et al., 2009; Matthysen, 2012).
Importantly, breeding dispersal often consists of three main
components within amphibian metapopulations (Perret
et al., 2003): (1) transience (i.e., nomadic individuals with a
fugitive presence in any given breeding patch); (2) local dis-
persal of resident individuals (non-transients) to breeding
patches within the studied area; and (3) permanent emigra-
tion, or dispersal of non-transient individuals to breeding
patches outside of the studied area. We focused on the sec-
ond component (i.e., local dispersal) of breeding dispersal,
as we aimed to characterize how wildfire influenced toad
movement from our core study area to alternative breeding
patches. We therefore defined breeding dispersal as the
movement of an adult toad between primary and alterna-
tive sites between years. Although we focused specifically
on local dispersal, we accounted for transience in our demo-
graphic models and acknowledged that permanent emigra-
tion was confounded with mortality in our study (see the
Survival section below for details).

To capture movements between primary and alterna-
tive sites in our marked population, we surveyed all bea-
ver ponds within 1.5 km of our core study area during
2019 and 2020. We selected a 1.5-km search radius
based on a 2015 pilot study in which adult toads were

radio-tracked and moved a maximum distance of 1.5 km
from the breeding ponds at which transmitters were
attached (G. M. Barrile, unpublished data). Surveys at
burned locations included three alternative sites at Chall
Creek (950, 990, and 1112 m from the study area) and
one at Buck Creek (410 m from the study area), and sur-
veys at unburned locations included four alternative sites
at Lower Gypsum Creek (290, 370, 1070, and 1450 m
from the study area) (Figure 1c,d). No alternative beaver
ponds occurred within 1.5 km of our study area at Upper
Gypsum Creek; thus, we excluded individuals at Upper
Gypsum Creek from dispersal models (see the Breeding
dispersal section below). We conducted 2-3 recapture
surveys of marked individuals at each alternative breed-
ing pond at both burned and unburned sites during 2019
and 2020 (i.e., 2-3 surveys per site, per year). We did not
tag new individuals during surveys at alternative sites,
rather we simply captured individuals and, if marked
previously, recorded each unique tag number.

Growth

To obtain a metric of individual growth, we calculated
the percent change in body mass between consecutive
years in each toad for which we acquired the requisite
information (i.e., toads captured in consecutive years at
some interval during the study period). We then com-
pared the percent change in body mass over time in all
toads that were captured in any two consecutive years.
Given that boreal toads are presumed to exhibit indeter-
minate growth (Duellman & Trueb, 1985), we were confi-
dent that percent change in body mass served as an
appropriate proxy for individual growth. Toad body mass
depends heavily on water absorption and bladder storage
(Jorgensen, 1994), such that urination after handling
toads captured in ponds could have altered individual
body mass. We presumed that biased measurements due
to urination were not an issue in our study, as we placed
toads in Ziploc bags immediately after capture, where
they remained throughout weighing (i.e., water loss from
urination was captured within the bag and therefore
included in the measurement of body mass). To test this
assumption and ensure that measurements were consis-
tent and repeatable within a year, we calculated the dif-
ference in body mass values obtained from each
individual that we captured multiple times within any
given breeding season (Appendix S1: Figure S1).

Survival

Our mark-recapture surveys produced capture data at two
distinct temporal periods (within and among breeding
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seasons), thereby comprising a robust design. Robust
designs consider multi-season studies of open populations
as series of short-term studies of closed populations,
allowing for demographic estimates that are robust to
sources of variation in capture probabilities (Kendall
et al, 1997). We used robust design models with a
Huggins estimator to analyze our mark-recapture dataset.
The Huggins estimator is an extension of the robust design
model that conditions abundance out of the likelihood and
permits the modeling of capture probability as a function of
individual covariates (Huggins, 1989). Our first set of robust
design models estimated apparent survival (¢p; “apparent”
because mortality cannot be separated from permanent
emigration) and temporary emigration (the probability a
toad was absent from a breeding pond in a given year)
between primary periods (i.e., breeding seasons) and cap-
ture probability (p) within primary periods. Estimating tem-
porary emigration involved two gamma parameters, y; and
v;. In this study, y/ denotes the probability that a toad
available for capture within our study area at time i — 1
moved off of the study area temporarily and thus was
unavailable for capture at time i (e.g., if a toad skipped a
breeding attempt and did not return to the breeding pond
at time i; Muths et al., 2006). y; signifies the probability a
toad that was not within our study area at time i—1
(i.e., unavailable for capture) remained outside of the
study area and thus was also unavailable for capture at
time i (e.g., if a toad continued to skip breeding attempts
in consecutive years). Both parameters assume that the
individual is alive, but temporarily unavailable for cap-
ture. Importantly, temporary emigration differs from per-
manent emigration (i.e., when animals leave the
sampling area and never return) by assuming that indi-
viduals return to the study area during subsequent sam-
pling occasions. Modeling temporary emigration helps
account for differences in capture probability between
individuals inside and temporarily outside the study area,
which results in less-biased capture probabilities and thus
less bias in estimates of survival probability (Fujiwara &
Caswell, 2002).

Rather than fitting an extremely large model set
incorporating all plausible combinations for model
parameters, we adopted a step-down approach (Lebreton
et al.,, 1992) to identify supported models and test the
influence of wildfire on boreal toad survival. We first
fixed survival and temporary emigration parameters at a
high dimensionality (¢, y/, and y} varied over time) while
identifying the most parsimonious structure for capture
probability (Doherty et al., 2012; Lebreton et al., 1992).
To avoid confounding parameters, we constrained the
last two v/ values and the last two y} values to equal one
another such that all survival and temporary emigration
parameters were identifiable (Muths et al., 2006). We ran

models in which capture probability remained constant
or varied by year (i.e., breeding season), capture occasion,
stream, and mountain range (Buck+ Chall creeks =
‘Wyoming Range; Lower Gypsum + Upper Gypsum Creeks =
Wind River Range), including additive and interactive
combinations of these variables (14 total structures;
Appendix S1: Table S1). Given that toad body condi-
tion and size could have influenced detectability, we
also included models wherein capture probability
varied by toad body mass, using the average mass
for individuals captured and weighed on multiple
occasions within a given breeding season.

We next identified the most parsimonious structure(s)
for temporary emigration. Our model set included no
temporary emigration (parameters fixed to zero),
time-constant, time-dependent, stream-dependent, and
range-dependent (Wyoming vs. Wind River Range)
models, including additive and interactive combinations.
For each model structure, we distinguished between ran-
dom and Markovian patterns of temporary emigration
(Muths et al., 2006). Under random emigration, the prob-
ability of temporary emigration at time i would be the
same regardless of whether an individual was present or
absent from the study area at i — 1, such that y/ =v; in
our random models (eight structures; Appendix SI:
Table S2). Under Markovian emigration, by contrast, an
individual that is absent from the study area at i—1
would have a different probability of temporary emigra-
tion at time i than an individual that was present in the
study area at i — 1 (Bailey et al., 2004), such that v/ #y]
and gamma parameters were estimated separately in our
Markovian models (nine structures; Appendix SI:
Table S2).

Finally, retaining the most parsimonious structures
for capture probability and temporary emigration, we
tested whether wildfire influenced boreal toad survival by
estimating apparent survival pre- and post-fire at both
burned and unburned sites (i.e., sites in the Wyoming
Range vs. sites in the Wind River Range). Because ani-
mals can display time-lagged responses to wildfire
(Hossack, Lowe, & Corn, 2013; Smucker et al., 2005), we
created an additional variable to explore potential differ-
ences in survival among pre-fire years (2015-2018),
1 year after wildfire (2018-2019), and 2 years post-fire
(2019-2020). We also considered time-constant and
time-dependent models for survival, including interac-
tions with site location (i.e., between mountain ranges).
Given the presence of transient individuals in other
amphibian systems (Frétey et al., 2004; Schmidt et al.,
2007), including some boreal toad populations (Muths
et al., 2018), we expected some degree of transience in
our system. We defined transient individuals as newly
captured toads that were marked, released, and then
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permanently emigrated from our study area, such that those
nomadic toads were no longer available for encounter dur-
ing subsequent surveys (Pradel et al., 1997). Resident (adult
males that remained in our study area) survival probability
can be negatively biased if transience is not modeled appro-
priately (e.g., if transience exists in the population, esti-
mated apparent survival will be lower following first
capture). We therefore fit each model structure for survival
both with and without transience (16 total models). We
incorporated transience into survival models following the
methods employed by Muths et al. (2018) (see appendix S2
in Muths et al., 2018, for details). We also excluded individ-
uals that dispersed to alternative breeding ponds outside of
our core study area from survival models to further avoid
biases when estimating the survival of resident individuals.

During each step of the modeling procedure described
above (i.e., capture probability, temporary emigration, and
apparent survival), we dropped models that did not converge
or models with singular parameters. We used Akaike infor-
mation criterion corrected for small sample size (AIC.) or
quasi-AIC. (QAIC,; depending on whether overdispersion
was present) model selection to compare and rank models
and to calculate model weights (Burnham et al., 2011).
Robust design analyses were conducted using Program
MARK (White & Burnham, 1999), with models constructed
via the RMark package (version 2.2.7; Laake, 2013) in R ver-
sion 4.1.1 (R Core Team, 2021). We used our global struc-
tures and the median ¢ approach to adjust for possible
overdispersion in the capture-recapture data (White &
Burnham, 1999).

Recruitment

We fit reverse-time capture-recapture models (Pradel, 1996)
to evaluate the potential effects of wildfire on boreal toad
recruitment. We used the robust design parameterization of
the Pradel model with a Huggins estimator (Huggins,
1989), which estimated apparent survival (¢) and recruit-
ment rate (f) between primary periods (i.e., breeding sea-
sons) and capture probability (p) within primary periods.
The recruitment rate (f) represents the number of individ-
uals added to the breeding population at time ¢ + 1 per
animal in the breeding population at time ¢. Given that
we used the same capture-recapture dataset that we
used to estimate survival in the previous section, we
retained the most parsimonious structures for ¢ and
p from the survival procedure when modeling recruit-
ment. Further, we considered the same model structures
as in the survival procedure, and models were parame-
terized and selected using the same methods as
described in the Survival section above.

Breeding dispersal

To assess the breeding dispersal of boreal toads in response
to wildfire, we fit multi-state robust design capture-recapture
models (hereafter, multi-state models) with a Huggins esti-
mator (Huggins, 1989). Our multi-state models estimated
apparent survival (¢) and state-transition probabilities (yr)
between primary periods (i.e., breeding seasons) and capture
probability (p) within primary periods. “States” in our
models refers to individual breeding ponds and transition
probabilities represent the probability of moving from one
breeding site to another between seasons. Because we were
concerned with dispersal outside of our core study area, we
only included transitions from “primary sites” to “alternative
sites” (and vice versa) and excluded transitions among pri-
mary sites (i.e., ponds within our core study area signified
state “A” and alternative ponds signified state “B” in which
breeding dispersal was defined by transitions between states
A and B).

We retained the most parsimonious structures for ¢
and p from the survival procedure when modeling dis-
persal. We also included structures wherein capture prob-
ability differed between states to account for potential
variation in sampling effort between primary and alterna-
tive sites. We considered models in which transition
probability remained constant or varied by toad body
mass (the average for each individual), year (2018-2019
vs. 2019-2020), and mountain range (burned vs. unburned
sites), including additive and interactive combinations of
these variables (14 structures; Appendix S1: Table S3). We
excluded capture histories from Upper Gypsum Creek in
multi-state models as no alternative ponds occurred within
1.5 km of our original study area at this location. Further,
we fixed the transition probability to zero during 2015-2018
because we did not survey at alternative sites (state B) until
2019. We also did not observe any individuals previously
marked at primary sites returning to primary sites after
being captured at alternative sites, so we fixed this transi-
tion (from state B to state A) to zero to improve parameter
estimation and model convergence. Transition probability
therefore represents the probability of an individual moving
from a primary site to an alternative site between years
(from state A to state B). Given that we did not tag
unmarked toads encountered at alternative sites, some
unaccounted-for individuals may have dispersed from alter-
native to primary sites between breeding seasons. Those
individuals should have been captured and marked during
our surveys at primary sites (unless they evaded capture),
however, and thus counted as recruits (via immigration) in
our reverse-time models (see the Recruitment section above).
All multi-state models were parameterized and selected using
the same methods as described in the Survival section above.
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RESULTS
Capture-mark-recapture surveys

We captured and tagged 1415 unique individuals during
2015-2020: 352 adult male boreal toads during 30 capture
surveys at Buck Creek, 844 toads during 35 surveys at
Chall Creek, 141 toads during 24 surveys at Lower
Gypsum Creek, and 78 toads during 19 surveys at Upper
Gypsum Creek. We surveyed all four streams multiple
times in each year (2015-2020), with the exception of
Upper Gypsum Creek, which we did not survey in 2020.
We captured 53 of our marked individuals at alternative
breeding ponds during 2019 and 2020 and therefore
excluded capture histories of those individuals from
survival analysis.

Growth

The mean difference in body mass measurements from
individuals captured multiple times within a breeding
season was 2.06 g, with almost half of all observations
(819 of 1757) between 0 and 1g (Appendix SI:
Figure S1). For context, the mean body mass of tagged
individuals was 28 g. We therefore maintain that body
mass represents a repeatable measurement within a year
and proceeded with percent change in body mass as a
metric for individual growth. Body mass did not influ-
ence our detectability of toads (Appendix S1: Table S1),
moreover, which further increased our confidence that
body mass measurements were not biased (e.g., larger
individuals were not more likely to be captured).

The annual percent change in body mass of adult male
boreal toads (n = 422) varied over time during our study
period at burned and unburned sites (Figure 2). Notably,
growth was elevated 2 years post-fire (2019-2020) compared
with the year directly following wildfire (2018-2019) at
burned sites, whereas growth did not appear to differ
between the same temporal intervals at unburned sites.
Furthermore, the percent change in body mass at burned
sites was higher between 2019 and 2020 (2 years post-fire)
than any other interval during our study period (Figure 2).

Survival

We found evidence of overdispersion (¢ =2.13) in the
robust design model (with temporary emigration)
containing the most general structures for all parameters.
We therefore used QAIC. to compare models and calcu-
late model weights, and report adjusted standard errors
for all parameter estimates using ¢ from the general

@ Burned
® Unburned

% change in body mass
o
|
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FIGURE 2 The annual percent change in body mass

(i-e., growth) of adult male boreal toads varied over time at burned
and unburned sites in the Bridger-Teton National Forest, USA,
during 2015-2020. Growth was elevated at burned sites 2 years
post-fire (2019-2020) compared with the year directly following
wildfire (2018-2019), whereas growth at unburned sites did not
appear to differ between these same intervals. Furthermore, growth
2 years post-fire at burned sites was higher than any other interval
during our study period. Mean values (dots) and standard errors
(error bars) represent the growth of all individuals that were
captured in any two consecutive years (n = 422) during 2015-2020.
The vertical dotted line and pointed arrow indicate the timing of
the Roosevelt wildfire (September 2018).

model. The best-supported structure for capture probability
(model weight, w = 1.0) indicated variation among streams
and secondary capture occasions (i.e., surveys within the
breeding season; Appendix S1: Table S1). Capture probabil-
ity ranged from 0.07 to 0.51 (mean = 0.24) and was gener-
ally higher at sites in the Wind River Range and during
surveys earlier in the breeding season. The most parsimoni-
ous structures for y/ and y} (model weight, w = 0.98) indi-
cated that boreal toads displayed a Markovian pattern of
temporary emigration whereby y/ # y; and both parame-
ters varied by mountain range (Appendix S1: Table S2).
At sites in the Wind River Range, whereas the probability
that an individual is absent at time i if present at time
i—1(.e., y/)was 0.17 (95% CI = 0.09, 0.29), the probabil-
ity that an individual is absent from the study area at
time i if absent at i — 1 (i.e., y}) was 0.28 (95% CI = 0.02,
0.89). Temporary emigration was considerably higher at
sites in the Wyoming Range, as y/ was 0.42 (95%
CI = 0.35, 0.49) and y, was 0.97 (95% CI = 0.91, 0.99).
The best-supported model for survival probability
(model weight, w = 0.34) indicated variation between
mountain ranges (Table 1), with higher mean survival at
sites in the Wind River Range (0.76; 95% CI = 0.68, 0.83)
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TABLE 1

Model selection results including model structure, quasi-Akaike information criterion corrected for small sample size

(QAIC,), AQAIC,, model weights (Wt), number of parameters (K), and Qdeviance (—2 log-likelihood/¢) from robust design
capture-recapture models used to estimate the apparent survival probability (¢) of adult boreal toads (n = 1362) at four stream segments in

the Bridger-Teton National Forest, USA, during 2015-2020.

Model QAIC, AQAIC,
@(range + 2a) 7863.53 0.00
@(tsf + range + 2a) 7865.20 1.67
@(prepost + range + 2a) 7865.54 2.02
@(range) 7865.92 2.39
@(year + 2a) 7867.08 3.55
@(prepost x range + 2a) 7867.20 3.68
@(prepost + range) 7867.50 3.97
@(tsf + range) 7867.70 417
@(year + range + 2a) 7868.98 5.46
@(tsf x range + 2a) 7869.03 5.51
@(year) 7869.44 591
@(prepost x range) 7869.54 6.01
@(year + range) 7871.46 7.94
@(year x range + 2a) 7876.64 13.11

Model Wt K Qdeviance
0.34 35 8843.68
0.15 37 8841.26
0.12 36 8843.65
0.10 34 8848.11
0.06 38 8841.10
0.05 37 8843.27
0.05 35 8847.65
0.04 36 8845.81
0.02 39 8840.95
0.02 39 8841.00
0.02 37 8845.50
0.02 36 8847.64
0.01 38 8845.48
0 43 8840.41

Note: We investigated apparent survival (¢) structures that varied spatially between mountain ranges (range) and temporally among all years (year), between
pre- and post-fire years (prepost), and among pre-fire years (2015-2018), 1 year after wildfire (2018-2019), and 2 years post-fire (2019-2020) (i.e., time since fire
[tsf]). We considered all additive (4) and interactive (x) combinations of spatial and temporal variables and fit each model structure both without and with
transience (denoted 2a). Models that did not converge or contained singular parameters were omitted from model selection and do not appear in the table. All
models included the best-supported structures for temporary emigration, y;(range) and y/(range) (Appendix S1: Table S2), and capture probability,

p(survey x site) (Appendix S1: Table S1), where survey indicates capture occasions within a year and site represents each of our four study streams.

compared with sites in the Wyoming Range (0.69; 95%
CI = 0.34, 0.90). The second and third best-supported
models (model weight, w = 0.15 and 0.12, respectively)
included the potential effects of wildfire on boreal toad
survival and indicated that annual survival probability
did not differ between pre- and post-fire years (Figure 3a)
nor among pre-fire years, the year following wildfire, and
2 years post-fire (Figure 3b). Four of the top five models
for survival, including the best-supported model, also
included the transience parameter (denoted as 2a in
Table 1), suggesting that accounting for transient adults
was important for modeling the survival of resident indi-
viduals. Transience varied only slightly between moun-
tain ranges: the proportion of transients was 0.15 at sites
in the Wind River Range and 0.19 at sites in the
Wyoming Range. All reported survival estimates
(e.g., Figure 3) reflect those of resident individuals only.

Recruitment
We found evidence of overdispersion (¢ =2.39) in the

reverse-time model containing the most general struc-
tures for all parameters. We therefore used QAIC. to

compare models and calculate model weights, and
adjusted standard errors for all parameter estimates using
¢ from the general model. The best-supported model for
recruitment rate (model weight, w = 0.98; Table 2) indi-
cated variation over time (i.e., by year) and between
mountain ranges (Figure 4). No other reverse-time
models were supported by our data (e.g., little to no
model weight; Table 2), including those with potential
effects of wildfire, suggesting that wildfire did not influ-
ence boreal toad recruitment at primary sites during our
study period.

Breeding dispersal

We found evidence of overdispersion (¢ =2.32) in the
multi-state model containing the most general structures
for all parameters. We therefore used QAIC, to compare
models and calculate model weights, and we adjusted
standard errors for all parameter estimates using ¢ from
the general model. Capture probability did not differ
between states (primary vs. alternative sites), as none of
the multi-state models with this structure carried any
model weight (Appendix S1: Table S3), and mean capture
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FIGURE 3 Apparent survival of adult male boreal toads (n = 1362) did not differ (a) between pre- and post-fire years or (b) among
pre-fire years (2015-2018), the year following wildfire (2018-2019), and 2 years post-fire (2019-2020) at both burned and unburned sites in
the Bridger-Teton National Forest, USA. Mean predicted survival estimates (dots) and 95% CIs (error bars) of resident individuals were

derived from (a) the third best-supported model for survival (model weight, w = 0.12) and (b) the second best-supported model for survival

(model weight, w = 0.15; Table 1). The vertical dotted line and pointed arrow in (b) indicate the timing of the Roosevelt wildfire

(September 2018).

TABLE 2 Model selection results including model structure, quasi-Akaike information criterion corrected for small sample size

(QAIC,), AQAIC,, model weights (Wt), number of parameters (K), and Qdeviance (—2 log-likelihood/¢) from reverse-time capture-recapture

models used to estimate the recruitment rate (f) of adult boreal toads (n = 1415) at four stream segments in the Bridger-Teton National

Forest, USA, during 2015-2020.

Model QAIC, AQAIC, Model Wt K Qdeviance
flyear x range) 9052.16 0.00 0.98 41 3212.02
flyear + range) 9059.94 7.78 0.02 37 3227.99
flyear) 9071.88 19.72 0.00 36 3241.98
fltsf x range) 9097.59 45.43 0.00 37 3265.64
flprepost + range) 9099.83 47.67 0.00 34 3274.01
flprepost x range) 9100.24 48.08 0.00 35 3272.39
ftsf + range) 9100.92 48.77 0.00 35 3273.07
flrange) 9111.55 59.39 0.00 33 3287.78

Note: We investigated structures for recruitment rate (f) that varied spatially between mountain ranges (range) and temporally among all years (year), between
pre- and post-fire years (prepost), and among pre-fire years (2015-2018), 1 year after wildfire (2018-2019), and 2 years post-fire (2019-2020) (i.e., time since fire;
tsf). We considered all additive (+) and interactive (x) combinations of spatial and temporal variables. Models that did not converge or contained singular
parameters were omitted from model selection and do not appear in the table. All models included the best-supported structures from our modeling procedure

for annual survival, including survival probability, ¢(range + 2a), where 2a denotes transience, and capture probability, p(survey x site), where survey
indicates capture occasions within a year and site represents each of our four study streams.

probability was only slightly higher at primary (0.20; 95%
CI = 0.19, 0.21) compared with alternative sites (0.18;
95% CI = 0.13, 0.26). The best-supported model for dispersal
(model weight, w = 0.48; Appendix S1: Table S3) indicated
variation over time (2018-2019 vs. 2019-2020) and between
mountain ranges. Boreal toads dispersed from primary sites
to alternative sites more at burned sites than unburned sites
on average (Figure 5). Furthermore, mean dispersal proba-
bility increased 2 years post-fire (2019-2020) compared with
the year directly following wildfire (2018-2019) at burned

sites, whereas mean dispersal was similar over this same
interval at unburned sites (Figure 5).

DISCUSSION

Understanding how organisms and populations respond
to wildfire is critical for the effective conservation and
management of species in landscapes experiencing shifts
in fire activity. We compared the growth, dispersal,

85U8017 SUOWILLOD 3A1Ie81D) 8|qeo ! [dde au A peusenof aJe Sspile O ‘@SN J0 Sa|ni o} Akeid18Ul|UO /8|1 UO (SUONIPUCO-PUB-SWB) W00 A8 |1 ARe.q] 1 BuUO//:SdNL) SUORIPUOD pue swie | 8y} 89S *[£202/0T/ZT] uo Ariqiauluo A8|im ‘BLeiqi] BuloAm JO AIsIBAIUN Aq ZTZy'2S99/200T 0T/I0pW0d A8 | im' Ake.d1jpul[UO'S euINo fessy/sdny oy pepeo|umoq ‘8 ‘2z0g ‘52680512



ECOSPHERE

| 11 of 18

1.4 — @ Burned
@ Unburned

1.2
1.0
0.8

0.6 —

Recruitment

0.4+

0.2

0.0 -

| | | | |
15-16 16-17 17-18 18-19 19-20

FIGURE 4 The rate of recruitment into the adult male
breeding population of boreal toads (n = 1415) varied over time
and between mountain ranges (i.e., burned vs. unburned sites) in
the Bridger-Teton National Forest, USA, during 2015-2020. Mean
predicted estimates (dots) and 95% CIs (error bars) were derived
from the best-supported reverse-time capture-recapture model for
recruitment (model weight, w = 0.98; Table 2). The vertical dotted
line indicates the timing of the Roosevelt wildfire (September 2018).
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FIGURE 5 The mean probability that adult male boreal toads
(n = 1337) dispersed to alternative ponds outside of our core study
area increased 2 years post-fire (2019-2020) compared with the year
directly following wildfire (2018-2019) at burned and unburned
sites in the Bridger-Teton National Forest, USA, with a greater
increase at burned sites than unburned sites. Mean predicted
estimates (dots) and 95% ClIs (error bars) were derived from the
best-supported multi-state capture-recapture model for dispersal
(model weight, w = 0.48; Appendix S1: Table S3).

survival, and recruitment of adult boreal toads pre- and
post-fire at burned versus unburned sites. At burned
locations, growth increased 2 years post-fire compared
with the year directly following wildfire and was
higher 2 years post-fire than any other interval during
our study period. Breeding dispersal also increased

2 years post-fire at burned sites, as some boreal toads
departed from our core study area and colonized alter-
native breeding habitat. Wildfire did not influence sur-
vival and recruitment, by contrast, as
capture-recapture models that included the effect of
wildfire were either not supported by our data or indi-
cated no differences between pre- and post-fire years.
Overall, our results suggest that wildfire did not influ-
ence the population’s vital rates of survival and recruit-
ment in our system, but did influence individual
metrics such as growth and movement behavior.

The Roosevelt wildfire ignited (15 September 2018)
toward the end of the growing season of boreal toads in our
study area. Toads emerged from hibernacula during
mid-May and remained active until entering overwintering
sites around mid-October (Barrile, Chalfoun, & Walters,
2021b). Given that boreal toads often overwinter in upland
forested habitats (e.g., deep in tree root canals: Browne &
Paszkowski, 2010)—areas that burned with high severity
during the Roosevelt wildfire—individuals may have been
forced into hibernacula earlier than usual during the fall of
2018 at burned sites. Toads therefore may have missed
opportunities for growth during the end of the active season,
which could explain the slight decrease in growth when we
sampled those individuals during the spring of 2019
(Figure 2), shortly after they emerged from hibernacula.
Alternatively, preferred hibernacula may have been
unavailable or destroyed during the wildfire, forcing toads to
travel greater distances and/or settle in suboptimal
overwintering habitat, both of which could have impacted
growth between 2018 and 2019. Slightly reduced growth
directly after wildfire was contrary to our prediction, but is
logical given the timing of both the wildfire and our field
sampling.

Increased growth 2 years post-fire at burned sites was
consistent with our predictions, which were based on the
expected effects of wildfire on environmental conditions
and the preferred temperatures and habitats of boreal
toads (e.g., as described in Bull, 2006; Guscio et al., 2008;
Lillywhite et al.,, 1973). Burned areas typically are
warmer and within the preferred temperature range of
boreal toads than unburned areas, particularly in impor-
tant refuge habitats such as small mammal burrows
(Hossack et al., 2009). Environmental temperatures can
remain elevated in burned areas for at least 3 years post-fire
(Hossack et al., 2009), providing favorable thermal opportu-
nities to promote growth and other processes such as diges-
tion, fertility, and immunity (Barrile, Chalfoun, &
Walters, 2021b; Hossack, Lowe, Ware, & Corn, 2013).
Growth ultimately is contingent on the availability of food
resources, however, which for boreal toads includes primar-
ily arthropods, principally ants (Formicidae), beetles
(Coleoptera), and spiders (Bull, 2006; Bull & Hayes, 2009;
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Campbell, 1970). Wildfire can increase the diversity and
abundance of arthropods and other invertebrates (Bess
et al., 2002; Buddle et al., 2006; Ferrenberg et al., 2019;
Jackson et al., 2012), and high-severity fires can result in an
extended “fire pulse” characterized by a flux of invertebrate
prey to aquatic and terrestrial habitats (Harris et al., 2018;
Malison & Baxter, 2010; Silins et al., 2014). Post-fire
increases in prey availability therefore may have stimulated
the growth of boreal toads between 2019 and 2020 at
burned sites in our study area. Furthermore, elevated envi-
ronmental temperatures may have interacted synergistically
with more abundant food resources (e.g., improved diges-
tion and energy incorporation) to increase post-fire growth
in boreal toads.

Improved growth 2 years post-fire may have contributed
to the increase in dispersal to alternative sites between 2019
and 2020 at burned sites. Larger amphibians and those in
better body condition often exhibit greater emigration pro-
pensity because of enhanced locomotor capacity and
decreased desiccation risk because of a reduced
surface-to-volume ratio (reviewed by Cayuela et al., 2020).
We unfortunately could not link growth with breeding dis-
persal in our study as we did not obtain body mass mea-
surements from individuals recaptured at alternative sites,
and multi-state models that included the influence of toad
body mass on dispersal failed to converge (Appendix S1:
Table S3). Nevertheless, greater dispersal 2 years post-fire in
our study is consistent with the rapid colonization rates of
previously unoccupied wetlands by boreal toads following
several wildfires in Glacier National Park, USA (Hossack &
Corn, 2007; Hossack, Lowe, & Corn, 2013).

Dispersal by boreal toads also can increase following dis-
turbances other than wildfire (volcanic eruptions: Crisafulli
et al., 2005; excavated ponds: Pearl & Bowerman, 2006),
including after the extreme flooding event that occurred in
our system during the spring of 2017. After high snowmelt
runoff destroyed several beaver dams at primary sites, many
boreal toads departed from these degraded breeding ponds
affected by flooding and settled in higher quality breeding
ponds that supported successful metamorphosis (Barrile,
Walters, et al., 2021). Although we did not quantify how
wildfire influenced the quality of breeding ponds in this
study, post-fire landslides and debris flows may have
increased sedimentation of beaver impoundments (Backlin
et al., 2004; Parker, 2006), reducing the quality of breeding
habitat and triggering departure. Alternative sites colonized
by boreal toads were not outside the burn perimeter in our
study, however, though we suspect that fire-induced habitat
changes (e.g., increased bare ground, decreased leaf litter
and shrub cover, warmer stopover refugia; Hossack
et al., 2009; Rochester et al., 2010) likely facilitated move-
ment to alternative ponds, provided that toads were able to
retain adequate body water while moving through these

habitats (Bartelt et al., 2010; Bartelt & Peterson, 2005).
Indeed, if wildfire increases landscape permeability, boreal
toads may be capable of longer-distance dispersal move-
ments post-fire (e.g., colonization of previously unoccupied
streams, range expansion), particularly larger females that
are able to travel greater distances (Bull, 2006).
Experimental manipulations involving fire treatments would
help clarify how male and female boreal toads move
through burned landscapes and which habitat features
enhance dispersal capacity.

Contrary to our prediction that survival would increase
post-fire, capture-recapture models that included the poten-
tial effects of wildfire indicated no differences in survival
between pre- and post-fire years. This result was surprising
as boreal toads perform optimally at higher temperatures
(e.g., growth, digestion; Lillywhite et al., 1973), prefer open
and severely burned areas (Bull, 2006; Guscio et al., 2008),
and exhibit improved immunity and disease resistance in
warmer habitats (Barrile, Chalfoun, & Walters, 2021b;
Hossack, Lowe, Ware, & Corn, 2013), all of which we
expected to increase survival rates. Nonetheless, survival
was best explained by mountain range (Wyoming Range
vs. Wind River Range), which likely was due to regional dif-
ferences in climatic regimes and disease prevalence. The
influence of climate and disease on boreal toad survival was
examined previously (Barrile, Chalfoun, & Walters, 2021a)
and fell outside of the scope of this study. Climate can influ-
ence how animals respond to disease and wildfire (Cohen
et al., 2019; Crowther et al., 2018), however, and interac-
tions among wildfire, climate, and disease would comprise
an intriguing line of future inquiry.

Recruitment of boreal toads also was not influenced
by wildfire during our study period. We expected recruit-
ment via immigration into our study area given that
boreal toad dispersal tends to increase post-disturbance
(Barrile, Walters, et al., 2021; Crisafulli et al., 2005) and
fire-induced habitat changes likely increased landscape
permeability (Rochester et al., 2010). Many of the breed-
ing ponds within our study streams were degraded from
spring flooding during 2017, however, such that emigra-
tion out of our system may have been more common
than immigration into our system. Furthermore, male
boreal toads do not become reproductively mature until
around 3-5 years of age (Carey et al., 2005), so perhaps
the influence of wildfire on in situ recruitment of locally
born individuals into the adult breeding population
would not manifest until several years after our study
period. Recruitment rate instead was best explained by
spatial and temporal variables during our study; recruit-
ment varied among years and between mountain ranges,
which likely reflects annual changes to the hydrological
dynamics of breeding ponds due to variation in regional
precipitation (Lambert et al., 2016).
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Abundance was a derived parameter in our capture—
recapture models. Extracting abundance estimates from
the top reverse-time model for survival and recruitment
(Table 2) revealed temporal variability in the number of
breeding males at each study stream (Appendix SI:
Figure S2). Whereas our results indicate relative temporal
stability in annual survival, recruitment rates varied con-
siderably over time, suggesting that changes in abun-
dance in our system were largely associated with annual
variation in recruitment. Furthermore, decreases in
abundance likely were attributable to increased dispersal
following disturbance events: flooding at all sites during
the spring of 2017 and wildfire at burned sites (Buck and
Chall creeks) during the fall of 2018, though post-fire dis-
persal did not manifest fully until 2019-2020. We are con-
fident that dispersal was in part a response to wildfire
and not solely due to the extreme flooding because simi-
lar flooding occurred at unburned locations where we
observed less dispersal to alternative ponds during
2018-2020. Notably, the dispersal-induced decrease in
abundance did not occur until 2018-2019 at Lower
Gypsum Creek because most beaver dams at that study
reach did not breach until the spring of 2018
(Appendix S1: Figure S2).

Higher abundances at burned sites (Appendix S1:
Figure S2) may partially explain greater movement to
alternative sites (i.e., density-dependent dispersal),
though it would not account for the increase in dispersal
2 years post-fire. Rather, our results for transience and
temporary emigration may help better contextualize dis-
persal in relation to wildfire. First, the proportion of tran-
sients in our system (0.15 and 0.19 at Wind River and
Wyoming Range sites, respectively) was consistent with
reports from boreal toad populations in Colorado, USA,
where 10%-20% of newly marked individuals were tran-
sients (Muths et al., 2018). Furthermore, a detailed exam-
ination of capture histories from individuals that we
observed dispersing from primary to alternative sites
revealed that 11 of 53 individuals (~20%) were captured
only once at primary sites prior to capture at alternative
sites, thus would have qualified as transients had we
never surveyed at alternative sites. Taken together, these
results suggest that ~10%-20% of individuals across
boreal toad populations exhibit nomadic behavior, such
that transience and local dispersal constitute two separate
processes within metapopulations. For instance, the 42 of
53 non-transient toads (toads captured in more than
1 year prior to departing primary sites) that moved to
alternative sites were most likely resident individuals that
dispersed in part in response to wildfire. Increased move-
ment by resident individuals post-disturbance contri-
butes to a growing body of research that suggests

context-dependent dispersal is relatively common in
pond-breeding amphibians (e.g., Boualit et al., 2019;
Cayuela et al., 2018; Tournier et al., 2017).

In contrast to transience, temporary emigration at our
sites differed dramatically from boreal toad populations
in Colorado. Temporary emigration was rare and random
(i.e., non-Markovian) in Colorado populations, with
males seldom absent from the breeding pond in consecu-
tive years (Muths et al., 2006). By contrast, our results
strongly indicated Markovian temporary emigration, with
a high probability of skipping breeding in consecutive
years (y; was 0.28 and 0.97 at Wind River and Wyoming
Range sites, respectively). We suspect that greater distur-
bance at our study sites (compared with sites in
Colorado) partially explains the higher rates of temporary
emigration. Further, although temporary emigration pre-
sumes that individuals will return to the study area, high
temporary emigration likely correlates to some degree
with increased dispersal. For example, a higher probabil-
ity of skipped breeding at burned sites compared with
unburned sites is consistent with our finding of greater
dispersal at burned sites, further indicating that wildfire
facilitated movement across the landscape.

Similar to temporary emigration, breeding dispersal was
rare in Colorado populations, with 0.01-0.02 constituting
the highest probability of dispersal, which was between sites
within 1 km of one another (Muths et al., 2018). Boreal
toads in our study area dispersed much more frequently,
particularly at burned sites (e.g, mean dispersal >0.3
2 years post-fire), and movements did not depend on dis-
tance to alternative sites. For instance, two alternative
ponds at Lower Gypsum Creek (unburned site) were in
closer proximity to primary sites than any alternative ponds
were to primary sites at burned locations, yet dispersal to
alternative sites was lower at Lower Gypsum Creek com-
pared with burned sites. This finding reinforces the notion
that wildfire played a key role in dispersal behavior within
our studied metapopulations. Notably, individuals may not
have dispersed to alternative sites if reproductive habitat
within our core study area was of high quality
(e.g., breeding ponds supported successful metamorphosis),
rather than degraded from spring flooding during 2017. In
other words, fire-induced habitat changes (e.g., increased
landscape permeability) and enhanced growth during
2019-2020 may have provided opportunity for individuals
to depart low-quality breeding habitat. Future studies there-
fore could consider the quality of habitat resources pre- ver-
sus post-disturbance to better predict the likelihood of
disturbance-induced dispersal (i.e., individuals may depart
low but not high-quality habitats after disturbance).

Historical wildfire regimes in our study area were
characterized by infrequent (>200-year return interval),
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high-severity fires, whereby subalpine and boreal forests
would recover long before another burn (Jager et al,
2021; Turner & Romme, 1994). In the near term, how-
ever, wildfire frequency, severity, and area burned are
predicted to increase (Hagmann et al., 2021), which
could affect overwintering sites in upland habitat and
critical riparian corridors, which were strongly preferred
by boreal toads during the summer foraging season
(July-September; Barrile, Chalfoun, & Walters, 2021b).
Further, boreal toads at our study sites bred almost exclu-
sively in beaver ponds within riparian corridors. Efforts
to maintain beaver populations in our system may help
protect riparian habitat from fire-induced habitat
changes, as beaver-dammed riparian corridors remain
relatively unaffected by wildfire compared with corridors
without beaver damming (Fairfax & Whittle, 2020).
Finally, wildfire also may interact with other key distur-
bances in our system, including extreme flooding and
livestock grazing, both of which can influence riparian
habitat and the quality of breeding ponds (Barrile,
Walters, et al., 2021; Barrile, Walters, & Chalfoun, 2022;
Fesenmyer et al., 2018). Determining how wildfire,
grazing, and flooding independently and interactively
influence the quality of breeding ponds and the dispersal
pathways between them likely will be critical for
predicting how boreal toads will respond in an uncertain
future.

As global wildfire regimes continue to change
(Hagmann et al., 2021; Krawchuk et al., 2009), identify-
ing which vital rates are responsible for changes in state
variables (e.g., occupancy, abundance) pre- versus
post-fire will be critical for developing targeted manage-
ment actions. We demonstrate that, in certain contexts,
dispersal can play a major role in changes to state vari-
ables after wildfire, as opposed to other vital rates such as
survival and recruitment. Our results suggest that
improved growth following wildfire may have facilitated
dispersal in our system (e.g., via increased locomotor
capacity), highlighting the importance of individual met-
rics in understanding population responses to distur-
bance. Increased growth and dispersal did not occur until
2 years post-fire, moreover, underscoring the need to con-
sider time-lagged responses in wildfire dynamics and dis-
turbance ecology (Smucker et al., 2005). The ability to
study individual and population responses to wildfire will
remain opportunistic, as pre- versus post-fire compari-
sons necessitate fires occurring by chance during the
study period. Greater investment in long-term projects
(consistent sampling over a number of years) such as
mark-recapture efforts would provide more serendipitous
opportunities to understand species responses and inform
conservation efforts in landscapes experiencing shifts in
fire activity.
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