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Abstract
Time-series data offer wide-ranging opportunities to test hypotheses about the phys-
ical and biological factors that influence species abundances. Although sophisticated 
models have been developed and applied to analyze abundance time series, they re-
quire information about species detectability that is often unavailable. We propose 
that in many cases, simpler models are adequate for testing hypotheses. We consider 
three relatively simple regression models for time series, using simulated and empiri-
cal (fish and mammal) datasets. Model A is a conventional generalized linear model of 
abundance, model B adds a temporal autoregressive term, and model C uses an esti-
mate of population growth rate as a response variable, with the option of including a 
term for density dependence. All models can be fit using Bayesian and non-Bayesian 
methods. Simulation results demonstrated that model C tended to have greater sup-
port for long-lived, lower-fecundity organisms (K life-history strategists), while model 
A, the simplest, tended to be supported for shorter-lived, high-fecundity organisms 
(r life-history strategists). Analysis of real-world fish and mammal datasets found that 
models A, B, and C each enjoyed support for at least some species, but sometimes 
yielded different insights. In particular, model C indicated effects of predictor vari-
ables that were not evident in analyses with models A and B. Bayesian and frequen-
tist models yielded similar parameter estimates and performance. We conclude that 
relatively simple models are useful for testing hypotheses about the factors that in-
fluence abundance in time-series data, and can be appropriate choices for datasets 
that lack the information needed to fit more complicated models. When feasible, we 
advise fitting datasets with multiple models because they can provide complementary 
information.
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1  |  INTRODUC TION

Understanding factors that govern population size through time 
is a central theme in ecology, with a rich history of inquiry that 
spans theoretical and mathematical (Hassell,  1975; May,  1975; 
Turchin,  1990) to empirical and applied approaches (Beissinger & 
McCullough, 2002; Morris & Doak, 2002). Over the past decade, 
advances in state–space models have woven together a number of 
these different research lineages. For example, efforts have suc-
cessfully incorporated density-dependent population growth mech-
anisms into data-driven statistical models of population time series 
while accounting for imperfect detection (Dail & Madsen,  2011; 
Hostetler & Chandler, 2015; Kanno et al., 2015; Zipkin et al., 2014). 
Model extensions account for excess zeroes due to immigration/
emigration (Hostetler & Chandler,  2015) and simultaneous anal-
ysis of multiple populations, which facilitates viability analysis for 
less intensively sampled populations (Leasure et al., 2019; Wenger 
et al., 2017). Mark–recapture models have likewise been extended 
to hierarchical models in which demographic processes are the focus 
(Link & Barker, 2005), joint models of interacting species (Yackulic 
et al., 2018), and integrated population viability models (Saunders 
et al., 2018), among others.

Two fundamental challenges characterize these recent modeling 
advances: (1) they are data intensive, generally requiring additional 
sampling effort to estimate observation error, and (2) they are struc-
turally complex, which puts them beyond the reach of many practi-
tioners. The first point is the most important because many existing 
time series datasets lack the information needed to fit an obser-
vation model, rendering such approaches infeasible. However, the 
complexity of the modeling can be a barrier even when all requisite 
data are available. Most such models must be fit using custom-coded 
Bayesian methods, often requiring weeks to months of development 
and troubleshooting. With large datasets, they may require consid-
erable computational time to fit a single model, although recent ad-
vances have reduced this time (e.g., Yackulic et al., 2020). Much of 
this complexity is a necessary result of incorporating observation 
and sampling models, which are essential for obtaining unbiased 
estimates of true abundance and population viability (Freckleton 
et al., 2006; Hobbs & Hooten, 2015).

However, there are many applications where incorporating ob-
servation and sampling models is not essential, and for which simpler 
models may provide useful insights. One such application, which is 
our focus here, is testing ecological hypotheses to explain changes 
in species abundance as a function of abiotic or biotic covariates. In 
this case, it is not necessary to know the true population abundance 
or the observation error, as long as the observation errors are ho-
mogeneous, or nearly so. Most importantly, the observation error 
cannot be correlated strongly with a predictor variable of interest. 

For example, if one wishes to test whether individual counts through 
time are a function of temperature, temperature must not strongly 
influence detection. If this assumption can be met, then a simple 
model structure may yield useful insights. This is fortunate because, 
as mentioned above, many existing population time-series data-
sets lack replicates or other auxiliary data with which to properly 
fit observation models (e.g., repeat sampling, multiple observers, or 
mark–recapture data), but nevertheless contain information poten-
tially useful for testing hypothesized drivers of population dynamics. 
The number of such datasets has greatly increased in recent decades 
(Comte et al., 2021; Dornelas et al., 2018).

Most population time series have some degree of temporal au-
tocorrelation, meaning that the abundance at any point in time is de-
pendent on one or more previous time steps (Barker & Sauer, 1992; 
Tuljapurkar & Haridas, 2006). This presents a challenge for testing 
hypotheses to explain abundance through time because abundance 
may be high despite unfavorable environmental conditions if it was 
even higher in a previous time step, or low despite favorable envi-
ronmental conditions if it was even lower in a previous time step. 
Conversely, negative density dependence can cause populations to 
decline when abundances are high or increase when abundances are 
low, regardless of any environmental influence. Addressing these 
nuisances may be necessary for testing hypothesized drivers of pop-
ulation change.

We explore a range of regression models that differ mainly in how 
they account for temporal autocorrelation. At one end of the spec-
trum is a traditional generalized linear modeling (GLM) approach in 
which abundance at every time step is assumed to be independent of 
previous time steps. This simple model would likely be most suitable 
for highly fecund, short-lived species (i.e., r life-history strategists) 
whose populations undergo large fluctuations with low temporal au-
tocorrelation. We refer to this as model A. At the other end of the 
spectrum, model C uses the difference in abundance between time 
steps (which can be interpreted as the population growth rate) as 
the response variable, an approach more appropriate for long-lived 
species with low fecundity (i.e., K life-history strategists) where pop-
ulations change relatively slowly through time (i.e., their population 
time series have high temporal autocorrelation). This model can also 
readily accommodate density dependence. An intermediate model 
(model B) is a GLM with the same structure as model A, but with 
random effects modeled as temporally autoregressive. Model B rep-
resents abundance as a function of environmental covariates, as in 
Model A, but removes the assumption that successive counts are 
independent.

We describe the three models (Section 2) and evaluate them using 
simulated population data to test how they perform for species with 
different life-history characteristics (Section 3). We then apply the 
models to two case studies using empirical data (Sections 4 and 5). 

T A X O N O M Y  C L A S S I F I C A T I O N
Applied ecology, Conservation ecology, Population ecology
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The first case study uses a freshwater fish dataset to test hypotheses 
of associations between river flow conditions and abundance over 
time, and the second case study uses a small mammal dataset to test 
hypotheses of population response to precipitation and fire regimes. 
Finally, we discuss the results and provide recommendations based 
on the model comparisons (Section 6). Throughout, our perspective 
is pragmatic rather than theoretical: we wish to identify models that 
are useful for testing hypotheses to understand the change in abun-
dance through time. Our hope is that this study provides useful 
guidance to ecologists and managers who are interested in testing 
hypotheses using existing time-series datasets, particularly those 
datasets that lack information for fitting more complicated models.

2  |  THREE REGRESSION MODEL S AND 
VARIANTS FOR TESTING HYPOTHESES TO 
E XPL AIN VARIATION IN ABUNDANCE OVER 
TIME

2.1  |  Model A. Generalized linear mixed model of 
abundance

For all models, we assume a dataset of counts comprised of individu-
als (Ns,t) at one or more sites (s) at two or more points in time (t), with 
at least one candidate covariate (X1s,t) to explain variation in counts 
in space and/or time (in this section, we index the covariate by space 
and time, but in our examples, it is indexed only by time, with one 
exception for example 2). Because we are modeling count data, we 
use a generalized linear mixed model (GLMM) in which stochasticity 
is treated as conditionally Poisson (potentially with overdispersion) 
or negative binomially distributed. The simplest model, which we call 
“model A,” assumes no latent temporal autocorrelation in abundance 
after accounting for fixed effects.

This is an overdispersed Poisson GLMM. If there are multiple sites, 
latent random effects �s,t may not be fully independent, as sites may 
differ in mean abundances even after accounting for covariates. 
Therefore, a random intercept for site identity will usually be nec-
essary. Random slopes for covariates may also be considered. This 
model is very similar to the basic Bayesian model for time-series 
analysis at multiple sites presented by Kéry and Schaub  (2012), 
which has been widely applied in ecological analyses. It can be fit-
ted with common non-Bayesian statistical packages or by Bayesian 
methods.

2.2  |  Model B. Generalized linear mixed model of 
abundance with autoregressive errors

Model B accounts for latent autoregressive dependence via the pa-
rameter ρ in formula 2 below. Most commonly, the autoregressive 

dependence is assumed to be Markov, i.e., dependent only on the 
previous time step (also called AR1 or a moving average model), al-
though different dependence structures are possible.

This can be coded with relative ease in Bayesian software such as 
JAGS (Plummer, 2003) or stan (Stan Development Team, 2020), or it 
can be fit with the R packages glmmTMB (Brooks et al., 2017) and brms 
(Bürkner, 2017). One consequence of adding the autoregressive term 
is that this model requires more temporally complete data than model 
A because at least two consecutive time steps of data are required to 
estimate the AR1 error term. However, missing count data can be im-
puted if Bayesian methods are used or a custom model is written. The 
model implicitly assumes that time steps are equal.

2.3  |  Model C. Generalized linear model of 
growth rate

Model C (Equation 3) characterizes the change in abundance through 
time—i.e., the population growth rate.

This model cannot be fit in this form using conventional non-Bayesian 
regression packages (although see Equation 5 for a reformulation), but 
can be estimated with Bayesian methods. We can include an autore-
gressive abundance term (on the original scale, not logged) to serve as 
a density dependence term (Hobbs & Hooten, 2015; Equation 4).

Coefficient β2 will usually take on a negative value, representing neg-
ative density dependence, i.e., the reduction in growth rate as N in-
creases. The intercept in this model (β0) can now be interpreted as 
the intrinsic growth rate or the growth rate when N is close to 0. This 
model formulation is a form of the Ricker model, with carrying capacity 
calculated as K =

�0

− �2
, after accounting for exogenous influences on 

population change (�1X1s,t). For simplicity, we use Equation 3 for model 
C in the simulations and examples in this study, but we return to the 
topic of density dependence in Section 6.

Like model B, model C implicitly assumes that time steps are 
approximately equal, and is not appropriate for datasets with many 
missing data points unless using Bayesian methods or a custom 
model that allows for imputation. Unlike models A and B, a random 
effect for site identity may not be necessary because differences 
in mean abundances among sites are accounted for by modeling 
changes in abundance rather than absolute abundance. However, if 
some sites have higher or lower long-term growth rates than can be 
explained by covariates, random effects may be required. Random 
slopes may also be considered if covariates affect the growth rate 
differently due to context-dependent processes that vary in space.

(1)

Ns,t
∼ Poisson

(

�s,t

)

; log
(

�s,t

)

= �0 + �1X1s,t + �s,t ; �s,t
∼Normal

(

0, �2
)

.

(2)

Ns,t
∼ Poisson

(

�s,t

)

; log
(

�s,t

)

= �0 + �1X1s,t + �s,t ; �s,t
∼
N
(

�
(

�s,t−1
)

, �2
)

.

(3)

Ns,t
∼ Poisson

(

�s,t

)

; log
(

�s,t

)

= log
(

�s,t−1

)

+ �0 + �1X1s,t + �s,t ; �s,t
∼
N
(

0, �2
)

.

(4)
Ns,t

∼ Poisson
(

�s,t

)

; log
(

�s,t

)

= log
(

�s,t−1

)

+ �0 + �1X1s,t + �2�s,t−1 + �s,t ; �s,t
∼
N
(

0, �2
)

.
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Although this model cannot be fit using conventional frequentist 
statistical packages, an approximation using conventional frequen-
tist regression methods is possible if the dataset contains no zeros, 
or if 1 is added to all counts to preclude non-zero values. We rear-
range the model to bring the lagged abundance term to the left side 
and omit the Poisson stochasticity (Equation 5).

In the previously presented models, the data used are the abundances, 
but here the data are the log of the ratio of abundance in time t to 
abundance in time t − 1, which is equivalent to log(Ns,t) − log(Ns,t−1). This 
makes it possible to fit the model using any linear regression software. 
Models of similar form have been used in ecological time-series analy-
sis previously, although often with a coupled observation model (e.g., 
Williams et al., 2003).

For all three models, observation error is a problem if it is cor-
related with one or more variables of interest, as mentioned previ-
ously. If a variable (say, temperature) affects both abundance and 
detection, the individual effects cannot be separated using the mod-
els discussed here. However, if detection varies predictably with 
an environmental variable that is not of research interest and is not 
strongly correlated with a variable of interest, then it may be pos-
sible to include a covariate to account for the observation bias and 
obtain an unbiased estimate of the covariate that is of interest. This 
does not require a separate observation model; the covariate can be 
simply included as a linear term (Barker et al., 2018). We illustrate 
this idea in the case study presented in Section 4.

3  |  SIMUL ATIONS

We simulated population time series to compare the performance of 
the Bayesian and non-Bayesian versions of the three models when 
fitted to datasets representing populations that varied by fecundity 
and survival. Our simulations were based on a matrix modeling ap-
proach that accounted for life span, reproductive age, juvenile sur-
vival rate, adult survival rate, fecundity (technically, this is fecundity 
multiplied by egg-to-juvenile survival), carrying capacity, initial pop-
ulation size, and length of simulation (Figure 1).

We assumed that juvenile survival (Sj) was affected by a single time-
varying environmental variable (env1), adult survival (Sa) was affected 
by a different time-varying environmental variable (env2), and that Sj 
and Sa did not covary. These environmental variables were drawn from 
normal distributions (one draw per time step, t) with a mean of zero 
and were added to Sj and Sa on the logit scale, after which the variables 
were back-transformed to probabilities. Survival was calculated inde-
pendently for each year class as a binomial process based on the appli-
cable (juvenile or adult) survival probability. Recruitment was modeled 
as a Poisson process based on the number of reproductive adults and 
fecundity. Density dependence was incorporated into the juvenile sur-
vival term by multiplying Sj by 1 − (Nt−1/K), where K is the carrying ca-
pacity. All code is provided with the data in the Zenodo archive.

In our first round of simulations, we ran a large number of iter-
ations representing two scenarios. Scenario 1 specified high fecun-
dity (4 juveniles per adult), low survival (Sj = 0.25, Sa = 0.4), a carrying 
capacity of 1000, and a lifespan of 3 years. Scenario 2 specified low 
fecundity (0.5 juveniles per adult), high survival (Sj = 0.5, Sa = 0.9), 
a carrying capacity of 500, and a lifespan of 12 years. To test our 
models, we summed the adult population at each time step and 
modeled N as a function of env1 and env2 using each of the three 
model structures. We predicted that models A and B would be fa-
vored for Scenario 1 (a population of a high-fecundity, short-lived 
species with low temporal autocorrelation), and that model C would 
be favored for Scenario 2 (a population of a low-fecundity, long-
lived species with high temporal autocorrelation), with model B in 
second place. For the Bayesian models, we ran 1000 simulations of 
50 years each for both scenarios using RunJAGS (Denwood, 2016) 
and JAGS (Plummer, 2003). For each simulation, we ran four chains 
for a burn-in period that varied by the model (5000 for model A; 
20,000 for model B; and 10,000 for model C, based on tests to en-
sure convergence) followed by a 20,000-iteration sampling period. 
For the non-Bayesian models, we ran 1000 simulations of 50 years 
each for both scenarios using glmmTMB (Brooks et al., 2017). We 
considered numerous indicators of model performance but de-
termined that most were inappropriate for comparison between 
Bayesian and non-Bayesian models that have different response 
variables (e.g., likelihood-based information criteria such as AIC or 
BIC are not an option). We elected to compare models based on the 
squared correlation between model predictions and actual values 
(a pseudo-R2), a simple but admittedly imperfect metric because it 
does not consider model complexity or out-of-sample performance. 
In all cases, model predictions only included fixed effects, not error 
terms.

We found that models A and B had better average performance 
than model C for scenario 1, consistent with predictions (Table 1). 
Nevertheless, model C was the best-supported model for about 
a quarter of the datasets. Bayesian and non-Bayesian models had 
nearly identical average performance, but for non-Bayesian models, 
model B had a performance that was consistently just slightly lower 
than model A, and therefore was rarely selected as best overall. 
However, the actual performance difference between models A and 

(5)log
(

Ns,t ∕Ns,t−1

)

= �0 + �1X1s,t + �s,t ; �s,t
∼
N
(

0, �2
)

.

F I G U R E  1 Structure of simulation model. Solid arrows indicate 
transitions; dashed arrows indicate influence. See text for details. 
This shows one juvenile stage and three adult stages as an example, 
but the number of stages can be user defined.
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B was very small, so we caution against interpreting model B as infe-
rior. Model A has the benefit of simplicity, while model B is arguably 
a “safer” choice because it does not assume independence between 
years, and therefore does not risk underestimating the standard er-
rors of parameter estimates. For scenario 2 we found that model C 
consistently had the highest pseudo-R2. Models A and B had very 
similar performance to each other, but much lower performance 
than model C.

We ran a second round of simulations in which we compared 
models based on predictor variables that were strongly correlated 
with abundance (i.e., env1 and env2, as used in the first round 
of simulations) with a weakly correlated predictor variable (env3) 
that was based on the sum of env1 and env2 but had substantial 
random noise added. For this comparison, we only used the three 
non-Bayesian models and evaluated them based on their ability to 
predict abundance in the final year (i.e., the mean absolute percent 
error for year 50), which was withheld from model fitting. This 
also provided an out-of-sample estimate of model error. We ran 
1000 iterations for each of the same two scenarios used in the 
first round. We hypothesized that the “strong” model would be 
selected the great majority of the time in all cases. However, our 
results indicated that the “weak” model was selected almost half 
the time in some cases, and at least a third of the time in all cases 
(Table 2). This was true in spite of the fact that mean error rates 
were higher for the “weak” models in both scenarios. This serves 
as a reminder to be cautious in interpreting the results of an anal-
ysis with a single time series—even a 49-year time series—as pro-
viding strong evidence in favor of one hypothesis over another. By 
random chance, a weak variable can have a tighter correlation with 
abundance than a strong variable in any individual dataset. Unless 

random variability is quite low, multiple datasets are needed to 
have high confidence in the outcomes of a test of two competing, 
correlated predictor variables.

Across our simulations, we found that all three models produced 
similar parameter estimates in most cases, although model A tended 
to have lower standard errors on parameters than models B and C. 
We consider the standard errors of model A to be biased low since 
this model assumes independence of annual samples, an assumption 
we know is not met in Scenario 2. In these simulations, we cannot 
evaluate the accuracy of parameter estimates against known values 
because the simulation model is substantially more complicated than 
any of the three fitting models. Nevertheless, we have found these 
simulations to be a useful tool for evaluating model behavior and 
performance. The simulations we report here are just a few of those 
that are possible, and we encourage users to adapt the supplied sim-
ulation code to conduct other comparisons relevant to particular 
applications.

4  |  C A SE STUDY 1 .  FLOW ECOLOGY OF 
SHOAL FISHES IN THE ETOWAH RIVER , 
GEORGIA ,  UNITED STATES

Aquatic organisms that have evolved in riverine ecosystems are 
assumed to be adapted to a flow regime (Lytle & Poff,  2004; 
Poff et al.,  1997). Although researchers have demonstrated that 
fish communities are structured by patterns in natural (Mims & 
Olden, 2012; Poff & Allan, 1995) and altered flow regimes (Bunn & 
Arthington, 2002; Kiernan & Moyle, 2012; Perkin & Bonner, 2011), 
species-specific or trait-specific models of organismal response 

TA B L E  1 Predictions and results of simulations of the three models under two scenarios. The “% each model selected as best” indicates 
the frequency with which each model had the lowest mean absolute percent error (MAPE) in 1000 random model runs. The “pseudo-R2” is 
the squared correlation between model predictions and actual values.

Scenario Scenario characteristics Prediction Model type

% of each model selected 
as best Pseudo-R2

A B C A B C

1 High fecundity, short-lived 
(r-strategist)

A, B, and C similar Non-Bayesian 69% 6% 23% .44 .42 .35

Bayesian 49% 26% 25% .42 .41 .35

2 Low fecundity, long- lived (k-strategist) C over B over A Non-Bayesian 0% 0% 100% .20 .19 .67

Bayesian 0% 0% 100% .19 .19 .67

TA B L E  2 Results of simulations to test a “strong” model (with predictors directly correlated with abundance) versus a “weak” model 
(with predictors indirectly correlated with abundance and added noise). The “% of times the ‘strong’ model selected as best” indicates the 
frequency with which the strong model had lower mean absolute percent error (MAPE) than the weak model, in 1000 random model runs. 
The “mean error rate” indicates the average MAPE for the strong and weak models in each scenario.

Scenario Scenario characteristics

% of times the “strong” model selected 
as best

Mean error rate for “strong”/“weak” 
model

A B C A B C

1 High fecundity, short lived (r-strategist) 64% 62% 55% 58/78% 49/63% 66/74%

2 Low fecundity, long lived (k-strategist) 56% 59% 65% 30/32% 27/28% 7/10%
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to interannual variability in flows are still largely lacking (Freeman 
et al., 2022). It has been suggested that these flow ecology ques-
tions could be better answered with the use of population rates (e.g., 
growth rate) rather than states (e.g., abundance) as response vari-
ables in time-series data analyses (Poff, 2018; Tonkin et al., 2019; 
Wheeler et al.,  2018). Model C can be viewed as a rate model, 
whereas models A and B are repeated-state models (i.e., models of 
abundances observed repeatedly through time).

We used a long-term dataset of fish counts from the Etowah River 
in Georgia, USA (Freeman et al., 2017), a tributary of the Coosa River 
that supports a diverse fish assemblage, including several imperiled 
species of conservation interest. Fish were collected using seines 
annually in the fall (September–October) at 10 sites between 1997 
and 2016, although collections were not made in 2010 and 2011, 
and some sites were not sampled in some years due to persistently 
high-flow conditions that made sampling unsafe and ineffective. For 
this analysis, we focused on six small-bodied shoal-dwelling fish spe-
cies, all considered r-strategists, which generally mature at 1 year of 
age and are known to spawn in the late spring and early summer 
(Table  3). We standardized abundance over different sampling ef-
forts for each site by dividing the number of individuals of each spe-
cies by the number of samples conducted at each collection event 
and multiplying by 100.

We proposed four hypotheses regarding how the abundances of 
fish species respond to flow:

1.	 Populations decline in years of exceptionally high summer flows 
due to direct mortality of eggs and young of the year, which 
reduces total abundance (Harvey, 1987; Humphries et al., 1999).

2.	 Populations increase in years following exceptionally high sum-
mer flows due to the scouring of fine sediment that increases 
the productivity of the system in the following year (Cattanéo 
et al., 2001). Alternatively, populations could rise due to a density-
dependent response to declines, or to observation/sampling error 
that mimics density dependence (Freckleton et al., 2006); it may 
not be possible to disentangle these mechanisms.

3.	 Populations decline in years of exceptionally low summer flows 
due to reduced habitat volume and productivity, although this 
effect could be masked if individuals immigrate to sampled sites 
from adjacent, less suitable habitats (Falke et al., 2010; Hakala & 
Hartman, 2004; Hedden & Gido, 2020).

4.	 Populations also decline in years following exceptionally low 
flows (Rolls et al., 2012).

We calculated high-  and low-flow metrics for the Etowah 
River from the USGS gage at Canton, GA (gage 02392000; U.S. 
Geological Survey, 2021), based on the 90th percentile and 10th 
percentile daily flows for the period of record (1896–present ex-
cept for the years 1906–1935). For every year for which we had 
fish data, we calculated the number of days above the 90th per-
centile (high-flow days, HFDt) and number of days below the 10th 

TA B L E  3 Parameter estimates (posterior means and standard deviations) and performance scores for the Bayesian versions of the three 
model types for six fish species. “High flow” and “Low flow” are variables representing the number of high-flow days and low-flow days 
in the current year. “lag” indicates the same variable for the prior year. “Q” is the discharge on the day of sampling. Superscripts indicate 
support for hypotheses of the corresponding number (i.e., parameter estimates with the expected sign and 90% credible intervals that do 
not overlap zero). R2 is the squared correlation between conditional model predictions and observations (a pseudo-R2).

Species Model High flow High flow lag Low flow Low flow lag Q DIC R2

Cyprinella callistia
Alabama shiner

A −0.49 (0.09)1 −0.11 (0.06) −0.01 (0.07) 0.01 (0.07) −0.42 (0.07) 1207 .39

B −0.45 (0.09)1 −0.07 (0.06) 0.03 (0.07) 0.02 (0.06) −0.43 (0.07) 1207 .37

C −0.19 (0.08)1 0.30 (0.07)2 0.28 (0.08) −0.30 (0.07)4 −0.25 (0.07) 1210 .54

Macrhybopsis etnieri
Coosa chub

A −0.13 (0.11) −0.01 (0.07) −0.04 (0.08) −0.12 (0.08) −0.05 (0.09) 1085 .05

B −0.13 (0.11) −0.01 (0.07) −0.04 (0.09) −0.13 (0.08) −0.04 (0.09) 1085 .04

C 0.07 (0.12) 0.17 (0.10) 0.17 (0.12) −0.13 (0.11) −0.02 (0.11) 1088 .04

Noturus leptacanthus
Speckled madtom

A −0.70 (0.16)1 −0.08 (0.08) −0.26 (0.10)3 0.02 (0.09) −0.25 (0.11) 706 .10

B −0.69 (0.16)1 −0.08 (0.08) −0.25 (0.10)3 0.02 (0.09) −0.25 (0.11) 707 .07

C −0.48 (0.16)1 0.63 (0.15)2 −0.04 (0.13) 0.00 (0.12) −0.15 (0.13) 720 .30

Noturus sp. cf. munitis
Coosa madtom

A −0.28 (0.14)1 −0.18 (0.09) 0.10 (0.11) −0.20 (0.10)4 0.12 (0.11) 821 .06

B −0.23 (0.14) −0.14 (0.09) 0.13 (0.10) −0.18 (0.10) 0.15 (0.11) 820 .03

C −0.07 (0.14) 0.04 (0.13) 0.36 (0.13) −0.39 (0.12)4 0.38 (0.13) 821 .17

Percina nigrofasciata
Blackbanded darter

A −0.55 (0.10)1 −0.24 (0.06) −0.17 (0.07)3 −0.15 (0.07)4 −0.45 (0.08) 1076 .30

B −0.53 (0.10)1 −0.23 (0.06) −0.18 (0.07)3 −0.15 (0.07)4 −0.45 (0.08) 1078 .35

C −0.28 (0.11)1 0.47 (0.09)2 −0.14 (0.09) −0.09 (0.09) −0.45 (0.09) 1084 .36

Percina palmaris
Bronze darter

A −0.48 (0.11)1 0.04 (0.06) −0.03 (0.08) −0.15 (0.07)4 −0.43 (0.08) 1064 .22

B −0.40 (0.11)1 0.05 (0.06) 0.02 (0.07) −0.15 (0.07)4 −0.40 (0.08) 1064 .21

C −0.18 (0.10)1 0.64 (0.08)2 0.22 (0.09) −0.29 (0.08)4 −0.27 (0.09) 1065 .41
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    |  7 of 13WENGER et al.

percentile (low-flow days, LFDt) for the summer, which we defined 
as June through September. We used the same flow metric values 
for each site within a year (i.e., flow metrics vary by time but not 
space).

For each species, we fit the Bayesian versions of models A–C 
using RunJAGS (Denwood, 2016) and JAGS (Plummer, 2003). We 
tested all hypotheses simultaneously by including fixed effects for 
HFDt, HFDt−1, LFDt, and LFDt−1. We also included a term for mean 
discharge on the day of sampling (Q), hypothesizing that capture ef-
ficiency would be negatively related to stage height (this term was 
only moderately correlated with other flow variables; Pearson's 
r < .5). Correlations among other predictor variables also were low 
(Pearson r = .42 or less). For consistency, we included a random inter-
cept for the site in all models. All predictor variables were standard-
ized by subtracting the mean and dividing by the standard deviation. 
We specified vague priors for all parameters. We ran four chains 
for a 30,000-iteration burn-in period (including a 2000-iteration 
adaptation) followed by a 100,000-iteration sampling period with 
a thinning factor of 10, for a total of 40,000 samples included in 
the posterior parameter estimates. We determined convergence 
based on the Brooks–Gelman–Rubin diagnostic (R-hat <1.1). When 
necessary, model runs were extended to achieve convergence. We 
calculated the deviance information criterion (DIC) as an indicator of 
the relative support for each set of three models for each species. 
We also calculated a pseudo-R2 as the squared correlation between 
marginal (i.e., without random effects) model predictions and obser-
vations. Code is provided with the data in the Zenodo archive.

All algorithms converged. We found that, based on DIC, models 
A and B had very similar performance; the slightly better likelihood 
of model B was balanced by its slightly greater complexity (Table 3). 
Model C had similar support to models A and B for most species, 
although it had substantially lower support for the speckled mad-
tom and the blackbanded darter. Based on pseudo-R2, model C had 
higher support than models A and B for all species except the Coosa 
chub.

We found mixed support for our hypotheses (Table 3). Hypothesis 
1 (negative effect of high flows) was generally supported, with neg-
ative parameter estimates for almost all models for all species. We 
found support for hypothesis 2 (positive effect of lagged high flows) 
for four species, but only with model C. Hypothesis 3 (negative 
effect of low flows) was generally not supported, with parameter 
estimates ranging from weakly negative to weakly positive across 
species and models, with the exception of the speckled madtom and 
the blackbanded darter. This could indicate a lack of an effect or that 
negative effects of low flows on abundances were masked by aggre-
gation of individuals (Falke et al., 2010; Hakala & Hartman, 2004; 
Hedden & Gido, 2020). Hypothesis 4 (negative effect of lagged low 
flows) was moderately supported, with generally negative parameter 
estimates, although these were imprecisely estimated for half of the 
species. Support for Hypothesis 4 was generally more evident with 
model C than with other models. All species except the Coosa mad-
tom had the expected negative parameter estimate for discharge on 
the day of sampling. Broadly speaking, parameter estimates were 

quite similar between models A and B for a given species, but model 
C tended to have parameter estimates that differed from the other 
two models. We explore this in Section 6.

We also ran non-Bayesian versions of all models for all species. 
The results, reported in the Supporting Information (Table SI1), were 
very similar to the Bayesian model results in most cases, although 
the standard errors on parameter estimates tended to be substan-
tially smaller for model A.

5  |  C A SE STUDY 2 .  SMALL MAMMAL S IN 
KONZ A PR AIRIE ,  K ANSA S,  UNITED STATES

Temporal changes in the community composition of small mammals 
have been linked to interannual climate variation, especially pre-
cipitation (Bruckerhoff et al., 2020; Cárdenas et al., 2021; Thibault 
et al., 2010). Mammal species representing different feeding guilds 
are hypothesized to respond differently to variations in precipita-
tion given the distinct effects of rainfall on different mammal food 
resources (Reed et al., 2006b), but these predictions have not been 
widely tested. We assessed whether populations of small mammal 
species at Konza Prairie Biological Station (KPBS) respond differen-
tially to precipitation based on their feeding guilds. We also assessed 
the role of the burning regime as burning, and grazing treatments 
are applied at the watershed scale at KPBS, a tallgrass prairie pre-
serve, and Long-Term Ecological Research site in the Flint Hills of 
Northeastern Kansas, USA.

Small mammal data from KPBS consisted of annual autumn sam-
pling from 1992 to 2012 in six watersheds. The upland and lowland 
portions of each watershed were surveyed with 20 stations of two 
Sherman live traps. We used annual total precipitation at KPBS as 
our climatic variable of interest. We also examined the role of time 
since the last burn; prescribed burns have been carried out at inter-
vals of 1, 4, or 20 years depending on the watershed. Correlations 
among predictor variables were low (Pearson r < .01). We included 
the six most common small mammal species in our analysis (Table 4) 
and classified the feeding guild of each species based on Reed 
et al. (2006b).

We proposed four hypotheses about how small mammal popula-
tions would fluctuate with precipitation and burning regime:

1.	 Populations of herbivores increase in years with higher pre-
cipitation, as more rainfall generates increased forage biomass 
(Reed et al.,  2006a, 2007).

2.	 Populations of insectivores and omnivores also increase in high 
rainfall years, as insect food sources are positively associated 
with increases in plant biomass (Kaufman et al.,  2012; Reed 
et al., 2006a).

3.	 Granivore populations decline in years with high precipitation 
because increased plant litter negatively affects seed predation 
(Reed et al., 2006b).

4.	 Increased time since burning has an overall negative effect on 
populations across long time periods. While the relationship 
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between woody cover and the abundance of several species is 
not monotonic, the lowest levels of abundance and small mammal 
richness occur at the highest levels of forest cover, i.e., the great-
est time since burning (Matlack et al., 2008).

We used Bayesian versions of models A, B, and C to analyze the 
mammal dataset. Each model included as predictors annual pre-
cipitation and time since burning—each scaled by subtracting the 
mean and dividing by the standard deviation—along with a random 
effect for the site. Precipitation varied in time but not among sites, 
whereas time since burning varied in both dimensions. Models were 
fit and compared using the same methodology and specifications as 
Example 1, albeit with a shorter burn-in period (20,000 iterations). 
Code is provided with the data in the Zenodo archive.

All algorithms converged. The top-ranked model formulation 
varied among taxa (Table 4). As with the fish analysis, models A and 
B diverged little in model fit for five of six species based on DIC (i.e., 
ΔDIC ≤2). These two models performed better than model C (i.e., 
ΔDIC >2) for four species (Eliot's short-tailed shrew, white-footed 
mouse, deer mouse, and Western harvest mouse), whereas models 
B and C performed similarly and were the top-ranked models for 
prairie vole. All three models performed similarly in the case of the 
hispid cotton rat. Pseudo-R2 based strictly on fixed effects varied 
considerably among taxa, and also generally indicated greater sup-
port for models A and B.

We found mixed support for our hypotheses (Table 4). Annual 
precipitation was associated with increases in counts of one of the 
two herbivores (prairie vole; Hypothesis 1) as well as the insectivore 
(Eliot's short-tailed shrew; Hypothesis 2), but not for the two omni-
vores (white-footed mouse and deer mouse; Hypothesis 2), where 
the effect of precipitation did not differ from zero based on Bayesian 
credible intervals (BCI). The lack of a strong rainfall effect in deer 
mouse was consistent with a short-term demographic analysis of this 
taxon at KPBS, in which the highest population growth rate occurred 
during a year of average precipitation, as opposed to a very wet or 
dry year (Reed et al., 2007). We expected the granivorous Western 
harvest mouse to decline with precipitation (Hypothesis 3) but this 
species also showed a small positive association with rainfall in the 
top models. Species had mixed responses to time since burning, with 
only deer mouse exhibiting the hypothesized negative response 
in the top-ranked models compared to two species with positive 
responses based on BCI (prairie vole and white-footed mouse). 
Parameter estimates for the predictors of interest in models A and B 
were similar: they had the same sign (i.e., positive, negative, or zero 
according to BCI) in 11 of 12 cases, and differed in magnitude by 
<25% in most cases. Parameter estimates from model C, however, 
deviated in several instances from those of A and B, particularly for 
the time-since-burning covariate. Results of the non-Bayesian mod-
els (Table SI2) were qualitatively similar to the Bayesian model re-
sults in most cases (e.g., most parameter estimates have the same 

TA B L E  4 Parameter estimates (posterior means and standard deviations) and performance scores for the Bayesian versions of the three 
model types for six mammal species. “Precipitation” and “Time since burning” are variables representing the amount of precipitation in 
the preceding year and the number of years since prescribed burns occurred at the site. Superscripts indicate support for hypotheses of 
the corresponding number (i.e., parameter estimates with the expected sign and 90% credible intervals that do not overlap zero). R2 is the 
squared correlation between conditional model predictions and observations (a pseudo-R2).

Species Model Precipitation Time since burning DIC R2

Microtus ochrogaster Prairie vole (herbivore) A 0.76 (0.26)1 0.57 (0.28) 301.0 .29

B 0.66 (0.28)1 0.56 (0.32) 297.9 .29

C 0.32 (0.34) 0.14 (0.25) 297.6 .02

Sigmodon hispidus
Hispid cotton rat (herbivore)

A −0.16 (0.28) 0.44 (0.35) 282.3 .06

B −0.22 (0.28) 0.33 (0.39) 283.8 .05

C −0.21 (0.30) −0.05 (0.25) 282.7 .01

Blarina hylophaga
Elliot's short-tailed shrew (insectivore)

A 0.49 (0.17)2 0.14 (0.19) 364.5 .03

B 0.46 (0.18)2 0.13 (0.19) 365.7 .04

C 0.85 (0.20)2 −0.05 (0.14) 373.9 .12

Peromyscus leucopus White-footed mouse (omnivore) A −0.07 (0.10) 0.44 (0.14) 526.6 .58

B −0.08 (0.10) 0.42 (0.17) 525.6 .58

C −0.01 (0.11) 0.04 (0.08) 529.3 .00

Peromyscus maniculatus Deer mouse (omnivore) A 0.06 (0.07) −0.41 (0.14)4 586.8 .27

B 0.04 (0.07) −0.44 (0.15)4 587.4 .28

C 0.00 (0.08) −0.06 (0.08) 594.6 .00

Reithrodontomys megalotis Western harvest mouse 
(granivore)

A 0.20 (0.13) −0.18 (0.19) 438.1 .00

B 0.27 (0.14) −0.10 (0.20) 437.1 .00

C −0.01 (0.23) −0.09 (0.21) 442.4 .00
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    |  9 of 13WENGER et al.

sign and similar magnitude). As for Case Study 1, we found that 
model A had much smaller standard errors on parameter estimates 
than models B and C.

6  |  DISCUSSION

Time-series datasets of species abundances have become more widely 
available in recent decades (Comte et al., 2021; Dornelas et al., 2018), 
offering increasing opportunities to test hypotheses to explain varia-
tion in species abundances through time. Our objective was to evalu-
ate the potential for simple statistical models to test such hypotheses. 
We found that even the simplest model (model A) was useful for de-
tecting relationships between predictors and abundances, particularly 
for r-strategists (shorter-lived and higher fecundity species), although 
a model with autoregressive errors (model B) and a model of growth 
rate (model C) was sometimes preferred in both simulations and case 
studies. In simulations of time series of K-strategists (longer-lived and 
lower fecundity species), models B and C were usually preferred. The 
species in both of our case studies were closer to r-strategists than 
K-strategists, but we nevertheless found that model C was preferred 
for several species. Based on our results, our general recommenda-
tion is to test all three models, rather than trying to determine a priori 
which is likely to be the best supported based on species traits or char-
acteristics of the time series. After the data are formatted, all three 
models are straightforward to implement. Of course, depending on the 
research question, there could be reasons to select one model over 
another (e.g., if questions concern population growth rate, model C 
would be preferred).

The fact that model C revealed relationships not evident in models 
A and B is an important result and is a further rationale to fit multiple 
models. Such discrepancies among models can provide insight into the 
mechanisms giving rise to observed population patterns, and (poten-
tially) evidence in favor of one or more alternative hypotheses (Yen 
et al., 2021). Case Study 1 provides an illustration: evidence for hy-
pothesis 2 (populations increase in years following exceptionally high 
flows) is only provided by model C. Models A and B do not reveal this 
relationship because they use abundance rather than growth rate as a 
response variable, and abundances tend to be low in years following 
exceptionally high flows because populations are still recovering from 
the even lower levels in the preceding year. The fact that populations 
tend to rebound in the year after the high flow is only evident when 
using the growth rate as the response variable (similar patterns of 
lagged high-flow effects are well documented in the fish ecology liter-
ature; Gido et al., 2013; Humphries et al., 2008; Rogosch et al., 2019). 
Because the models assess different things, we advise fitting multiple 
models and interpreting outputs from each.

Model C has one advantage over the other models: because it 
measures change, abundance is entirely factored out of the regres-
sion equation. This implies the model can be used to simultaneously 
analyze multiple datasets collected with different sampling methods, 
as long as such methods have been used consistently within each 
dataset. Of course, the same predictor variables must be available in 

each dataset to make such comparisons, and the assumption of ho-
mogeneity of observation error still applies. Setting up such a multi-
dataset model is straightforward with the non-Bayesian version of 
model C, although it requires more work with the Bayesian version.

On the other hand, model C will not be as useful for datasets that 
(1) lack sufficient year-to-year variability or (2) have spatial variability 
rather than temporal variability in relationships of interest. The first 
case is perhaps best illustrated with an extreme example: consider 
a hypothetical 10-year dataset in which the environmental condi-
tions are poor for 5 years running and then good for 5 years running. 
Further, assume that the population responds by staying at a steadily 
low level for 5 years and then at a steadily high level for 5 years. 
Because there is overall little information on the change in such a 
dataset, model C will perform poorly, whereas models A and B should 
perform quite well. This is a toy example, but the more general point 
is that to test hypotheses about the factors governing population 
increases and decreases, the dataset must have sufficient dynamics 
in both the population response and predictors. Three mammal taxa 
in case study 2 illustrate the second case in which model C may be 
inappropriate. For these species—prairie vole, white-footed mouse, 
and deer mouse—sites with above-average time-since-burning val-
ues had variable but typically higher species abundances (or lower 
in the case of deer mouse) than sites with more frequent burning. 
Models A and B identified this correlation between time since burn-
ing and overall abundance while model C did not because the great-
est variability in both abundance and the predictor occurred across 
space rather than through time. Therefore, for datasets in which 
effects of interest vary spatially, model C may not be as useful as 
models A and B.

Datasets with many gaps present a problem for the non-Bayesian 
versions of models B and C when using conventional regression 
packages. Fitting models B and C requires data from both the cur-
rent and the prior time step, thus one missing value can effectively 
eliminate two observations from the time series (i.e., 2 years of data). 
Where sampling is conducted every other year or every few years, 
which is often employed in wildlife and fish population monitor-
ing designs (Urquhart & Kincaid, 1999), model A becomes the only 
choice available if conventional frequentist methods are used. The 
Bayesian versions of the models allow imputation of missing data, 
although we have not tested their performance when frequency and 
intervals in gaps are large.

The simplicity of Model A is appealing, but outputs from this 
model must be interpreted carefully as the assumption of indepen-
dence of errors is unlikely to be met in many time-series datasets. 
We found that the precisions of the parameter estimates from non-
Bayesian model A were overly optimistic in both simulations and 
case studies. This did not appear to be an issue with the Bayesian 
version of model A, however.

We expect that some readers may be concerned with the lack of 
an observation model. Occupancy models (MacKenzie et al., 2002), 
N-mixture models (Royle,  2004), and their variants have become 
standard methods for many ecologists and fisheries and wildlife 
practitioners, despite the additional data requirements and serious 
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questions about their reliability under certain conditions (Barker 
et al., 2018; Link et al., 2018). Our objective is not to discourage the 
use of observation models for datasets with the information to pa-
rameterize them. Rather, we seek to encourage the use of accessi-
ble methods for analyzing long-term datasets when the information 
needed for observation models is lacking (e.g., monitoring programs 
that were initiated prior to the widespread use of repeat sampling 
methods), or when the statistical programming and time required 
for implementing a hierarchical model with an observation compo-
nent renders such methods impractical. As shown in Case Study 1, 
variables that affect detection can be included as covariates in the 
regression equation; we suspect that this can address detection bias 
as effectively as an observation model, or nearly so, in many cases 
(also see Barker et al., 2018). However, if the variables affecting de-
tection are highly correlated with variables hypothesized to affect 
the abundance, then it is impossible to distinguish detection effects 
from abundance effects. In such cases, an observation model (and 
the additional data to parameterize such a model) is necessary.

All models presented herein are variants of linear regression, and 
their appropriateness for testing hypotheses depends on whether 
those hypotheses can be represented in the form of a linear relation-
ship with the response. Reality is complex, and a hypothesis such as 
“populations of herbivores increase in years with higher precipita-
tion, as more rainfall generates increased forage biomass” attempts 
to identify the most essential relationship in a cascade of influences 
and interactions involving spatially variable soils, timing of precipi-
tation, the size of other herbivore populations, etc. If a hypothesis 
is not supported in the form that it is tested, it could be because a 
key aspect of the process is missing, or because the metric chosen 
does not have a linear relationship with the response. Sometimes 
relationships can be linearized via transformations (e.g., saturating 
relationships can be made more linear by log transformation of the 
predictor) or by including polynomial terms. In our examples, we did 
not compare alternative metrics for representing our hypothesis, but 
if we were conducting these analyses in earnest (rather than demon-
strating methods), we would certainly consider other possibilities.

Density dependence is another potential nuisance. Although we 
do not incorporate density dependence into Model C in the simula-
tions or examples reported here, in separate explorations we have 
frequently found support for including this parameter. In these tests, 
we have nearly always found that the parameter estimate was neg-
ative, indicating negative density dependence. Including a density 
dependence term has the additional advantage of accounting for 
observation and sampling error that mimics negative density depen-
dence (Freckleton et al., 2006). By random variation, a particular ob-
served count could be exceptionally high or low, but such anomalies 
are unlikely to be followed by a similarly extreme estimate in the 
next time step. The result is that populations will appear to increase 
rapidly after an unusual dip, and to decline after an unusual peak, a 
pattern similar to negative density-dependent behavior. However, 
unless density dependence is the focus of the analysis, it is of little 
consequence whether the density dependence term represents true 
or apparent density dependence. The term serves the dual purpose 

of accounting for both, with a caveat that the unique contributions 
of each may not be identifiable.

The choice between non-Bayesian and Bayesian methods is 
mostly a practical one. We have observed that the non-Bayesian 
and Bayesian versions of all three models generally yield very sim-
ilar parameter estimates. We find the non-Bayesian model C to be 
somewhat unsatisfying in that it requires the ad hoc solution of add-
ing 1 to counts of 0. Nevertheless, our simulations indicated that the 
non-Bayesian version of model C can detect relationships between 
predictors and response where they are present, and so is likely to 
be sufficient for many purposes. One analytical strategy could be 
to first test models using the non-Bayesian methods, and to invest 
the effort into the Bayesian models only if results are sufficiently 
interesting or the application is sufficiently important. This two-step 
process may be favored when there are large numbers of hypothe-
ses to be tested, as preliminary screening can be conducted much 
more quickly with the non-Bayesian models.

Long-term abundance datasets were once a scarce resource, but 
they have been quietly accumulating in recent decades. There are 
now many hundreds, likely thousands of such datasets, although 
many lack the auxiliary data necessary to parameterize a linked ob-
servation model. We were thus motivated to explore relatively sim-
ple, accessible methods that could be used to make valid inferences 
from time-series datasets without an observation model. Despite 
limitations potentially imposed by unknown observation biases, we 
believe that unlocking the information in these datasets could con-
tribute greatly to ecological understanding. We hope that our results 
will encourage others to use the models presented here as starting 
points to investigate environmental effects on population dynamics.
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