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Ecosystems can show sudden and persistent changes in state
despite only incremental changes in drivers. Such critical transi-
tions are difficult to predict, because the state of the system often
shows little change before the transition. Early-warning indicators
(EWIs) are hypothesized to signal the loss of system resilience and
have been shown to precede critical transitions in theoretical
models, paleo-climate time series, and in laboratory as well as
whole lake experiments. The generalizability of EWIs for detecting
critical transitions in empirical time series of natural aquatic
ecosystems remains largely untested, however. Here we assessed
four commonly used EWIs on long-term datasets of five freshwater
ecosystems that have experienced sudden, persistent transitions
and for which the relevant ecological mechanisms and drivers are
well understood. These case studies were categorized by three
mechanisms that can generate critical transitions between alterna-
tive states: competition, trophic cascade, and intraguild predation.
Although EWIs could be detected in most of the case studies,
agreement among the four indicators was low. In some cases, EWIs
were detected considerably ahead of the transition. Nonetheless,
our results show that at present, EWIs do not provide reliable and
consistent signals of impending critical transitions despite using
some of the best routinely monitored freshwater ecosystems. Our
analysis strongly suggests that a priori knowledge of the underly-
ing mechanisms driving ecosystem transitions is necessary to iden-
tify relevant state variables for successfully monitoring EWIs.

competition | intraguild predation | trophic cascade | time series |
resilience indicators

E cosystems can exhibit multistate stability and occasionally
sudden transitions from one regime to another despite only
incremental changes in drivers (1-5). These critical transitions
are characterized by the occurrence of alternative regimes under
the same environmental conditions and by abrupt, discontinuous
transitions between regimes when a critical threshold is exceeded.
As each regime is stabilized by feedback loops, the thresholds for
the forward and backward shifts may differ, resulting in hysteresis
(5). A well-known example of this phenomenon is the nutrient-
driven shift between a clear, macrophyte-dominated regime and a
turbid, phytoplankton-dominated regime in some shallow lakes (6).

At the ecosystem level, such fundamental reorganizations affect
ecological processes and hence ecosystem services, potentially in-
curring large economic costs. Therefore, reliable tools for assessing
ecosystem resilience are sought, ideally providing management
with time to avert an impending critical transition (7). Stabilization
through feedback loops often precludes a systematic response in
state variables ahead of the shift, hindering the prediction of critical
transitions (8). The development of early-warning indicators (EWIs)
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derived from bifurcation theory has drawn considerable interest
for their ability to detect critical transitions, particularly given
their promise of generalizability. These EWIs have been shown
to precede critical transitions in modeled time series (8-10),
experimental time series (11-13), reconstructed paleo-climate
records (14, 15) and whole-lake experiments (16). Until now,
however, an assessment of the generality and the detection
power of EWIs on long-term monitoring data in aquatic systems
is lacking (17).

EWIs are statistical metrics that quantify the loss of temporal
or spatial resilience and thereby provide advance warning of the
potential proximity to a critical threshold (18). Several EWIs are
related to critical slowing down, a characteristic property of dy-
namic systems close to catastrophic local bifurcations (19). A
bifurcation marks a threshold at which the stabilizing properties
of the state of the system change. As the system approaches such
a threshold, the return rate to equilibrium after a small perturba-
tion slows, so that the system tends to become more similar to its
own past, resulting in an increase in autocorrelation at lag-1 (AR-1)
(20). This lack of decay of the impact of past perturbations also
leads to a buildup in variance, typically measured as an increasing
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trend in SD (21). Concurrent increases in SD and AR-1 in a time
series also produces greater variability in low-frequency processes
compared with high-frequency processes in the power spectrum of
a time series, which can be quantified as an increasing density ratio
(DR) of variance at low to high frequencies (7, 22). In addition to
critical slowing down, the system tends to remain longer at the
basin boundary between the two alternative attractors, resulting in
a skewed distribution of the state variable (SK) (23). The expected
trends in AR-1, SD, DR, and SK are not exclusive indicators of
critical transitions as false positives and false negatives can occur
(24). Thus, before the application of EWIs based on critical slowing
down, careful analysis of whether a system is actually undergoing a
critical transition is required (25).

Abrupt changes in the state of an ecosystem can develop from
several mechanisms, including (i) linear tracking of large changes
in environmental conditions, (ii) nonlinear but continuous (re-
versible) responses to gradual changes in environmental condi-
tions, and (i) nonlinear discontinuous (irreversible) responses
to gradual changes in environmental conditions (26). Whereas
the first mechanism is distinguished by concurrent large changes
in environmental drivers (e.g., a sudden increase in tempera-
ture), the difference between the other two mechanisms becomes
apparent only when the driver is reversed. Thus, single step
changes in time series cannot provide direct evidence of a critical
transition (27). Given the rarity of empirical time series covering
forward and backward shifts, identification of critical transitions
in natural systems is difficult; however, by linking observed step
changes to a mechanistic understanding of the driving processes
that can give rise to bistability, one can hypothesize (but not
prove) the existence of a potential critical transition (5, 28).

Lakes have been proposed as particularly suitable ecosystems
to test for EWISs associated with critical transitions. The modular
nature of lakes also allows for comparisons across different lakes
(29). In aquatic systems, various ecological mechanisms have
been shown to generate critical transitions between alternative
states; the most commonly identified mechanisms include
(i) competition between two or more species (2, 28); (ii) trophic
cascades through inclusion or exclusion of top predators (16) or
parasites (30), resulting in overexploitation traps; and (i) intraguild
predation (IGP) through resource competitors that also prey on
one another (31, 32). In the present work, we selected 14 state
variables of five well-documented case studies of freshwater
critical transitions to test whether four commonly used EWIs
(AR1, SD, SK, and DR) can be detected reliably in advance of
the transition. We assessed how often these EWIs showed the
same trends (agreement), and whether their behavior depen-
ded on the mechanism, type of state variable, magnitude of the
step, or sampling frequency. Finally, we also tested how many
years ahead of the transition EWIs were detectable. We strive
to provide a comprehensive assessment of EWIs in some of the
best-documented aquatic time series collected following stan-
dard monitoring schemes.

Results

Selection of Case Study Ecosystems and State Variables. We selected
five case study ecosystems based on expert knowledge of well-
described regime shifts that can be qualified as critical transitions
in aquatic ecosystems: Lake Miiggelsee (Germany; LMS), Lake
Veluwemeer (The Netherlands; LVM), Lake Zwemlust (The
Netherlands; LZL), Lake Washington (United States; LW), and
Lake Vortsjarv (Estonia; LV). Based on the literature on these
case study ecosystems, we identified relevant critical transition-
generating mechanisms, which guided our choice of 14 state
variables for EWI analysis. The case studies, mechanisms, state
variables, and drivers are summarized in Table 1. A more detailed
description of each case study and rationale for choosing the 14
state variables is presented in SI Appendix, section S1.
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Transition Detection and Seasonal Adjustment. We used three
complementary methods—piecewise linear regression, Pettit,
and STARS (Methods)—to robustly assess the timing of transi-
tions (i.e., breakpoints, defined as large, persistent step changes)
in the time series of each state variable. We found one break-
point in 12 state variables and two breakpoints in two state
variables (Table 2 and Fig. 1), resulting in 16 prebreakpoint time
series (i.e., from start to step change) for further analysis. In all
state variables, the timing of the breakpoints confirmed the
timing of transitions reported in the literature. Information on
the data structure, including time period, sampling interval,
number of data points, and the percentage of missing values in
the prebreakpoint time series, are summarized in SI Appendix,
Table S2. Each state variable showed significant differences in
the means before and after the breakpoint (Table 2), with step
magnitudes ranging from 0.24-1.59*standard deviation (Table 2).
Each prebreakpoint time series was detrended and seasonally
adjusted using a Gaussian smoother with a bandwidth corre-
sponding to 12 data points (for monthly datasets) or 26 data
points (for fortnightly datasets). Testing of the residual time
series for remaining linear trends and seasonality showed a per-
sistent, but greatly reduced, seasonal signal in some time series
(81 Appendix, Table S2).

EWI Analysis. In 14 of 16 analyzed time series, loss of resilience
before the breakpoint was signaled by at least one of the four
EWI metrics (coded “+” in Table 2; details provided in SI Ap-
pendix, section S3), based on the median of the trend distribution
across yearly increments of rolling window sizes (Methods). We
found trends towards increasing AR-1 and DR in 10 cases each
(63%), toward increasing SD in nine cases (56%), and toward
increasing or decreasing SK (according to the direction of the
state change) in seven cases (44%) (Fig. 2 and Table 2). In some
cases, AR-1 trends were increasing from negative values to
positive values (SI Appendix, section S3). We recorded these
trends as positive [coded “(+)” in Table 2]. In several cases, indi-
cators showed trends opposite to the theoretical expectation
(coded “~” in Table 2). Only the state variable phytoplankton
biomass in LMS showed the theoretically expected trends in all
EWTIs, whereas in two state variables—nonalgal attenuation in
LVM and cyanobacteria biomass in LW—all EWIs failed. The
agreement was low between positive AR-1 and SD trends (five
cases), but higher between positive AR-1 and DR trends (10
cases). Logistic regression revealed no significant relationships
(P < 0.05) between EWI behavior and mechanism (competition,
IGP, or trophic cascade), state variable level (species, group, or
ecosystem), step change height, length of prebreakpoint time
series, nor sampling interval (fortnightly or monthly).

Robustness to Rolling Window Size and Significance of EWI Trends.
We estimated the robustness of EWI trends to the size of the
rolling window, shown as the distribution of trends around their
median (boxplots in Fig. 2 for AR-1 and SD and in SI Appendix,
Fig. S4 for DR and SK). The large majority of trends were quali-
tatively robust to rolling window size, as demonstrated by the low
number of trend distributions in which the boxplot crossed zero on
the y axis.

We also tested for the significance of the trends by estimating
the rate of false positives using simulated surrogate time series
(Methods). Among all 64 EWI trends (16 time series by four
EWIs), only three trends were significant in >50% of the com-
parisons between data-based and surrogate-based trends. An
additional 29 EWIs were significant in <50% of comparisons,
and 32 EWIs showed no significant differences between data-based
and surrogate-based trends (gray bars in Fig. 2 and SI Appendix,
Fig. S4).
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Table 1. Summary of case study systems, state variables, and drivers by mechanism: Trophic cascade, intraguild predation,
and competition
Case
Mechanism study Shift in state variable Driver Process References
Trophic Lw Increase in water Increase in Trophic cascade from longfin smelt (53, 54)
cascade transparency grazing pressure (Spirinchus thaleichthys) on secondary
consumer Neomysis on primary consumer
Daphnia and finally on producers
(phytoplankton)
LMS Increase in Dreissena Decrease in Changes in dominant carnivorous (55, 56)
polymorpha larvae predation pressure zooplankton species coincided with
increase in Dreissena larvae.
Decrease in Leptodora Increase in Leptodora are a preferred prey for fish
kindtii (period 1) predation pressure and likely indicate changes in overall
Increase in Leptodora Decrease in fish predation pressure
kindtii (period 2) predation pressure
Competition LMS Decrease in phytoplankton Reoligotrophication Reduction in nutrients decreases (57, 58)
biomass phytoplankton growth, improving
light climate favoring macrophyte
reestablishment
Decrease in Aphanizomenon  Reoligotrophication Warmer springs promote cold-adapted (59)
(period 1) counteracted by cyanobacteria development
spring warming
Decrease in Aphanizomenon Reoligotrophication Reduction in nutrients decreases (57)
(period 2) phytoplankton growth, improving
light climate favoring macrophyte
reestablishment
Lw Decrease in non-Daphnia Reduction in predation Indirect effect of trophic cascade (53, 54)
cladocera pressure on Daphnia through increasing resource
competition by Daphnia
Increase in cryptophytes Reoligotrophication Reduction in nutrients decreases
Decrease in cyanophytes Reoligotrophication cyanobacteria competitive ability
and releases other phytoplankton
from competition
LZL Decrease in water Eutrophication, epiphyte Competition between submerged (60, 61)
transparency shading, and herbivory vegetation and phytoplankton
reduction in nutrients under eutrophication and herbivory
and benthivorous fish on macrophytes
LVM Decease in nonalgal Recovery of submerged vegetation (62)
attenuation cover and subsequent stabilization
of sediments
Lv Increase in functional Eutrophication Competition between functional (63, 64)
group P, decrease in groups P (eutrophic epilimnion
functional group U species) and U (summer
epilimnion species)
Increase in functional Reoligotrophication Competition between
group H1 nonnitrogen-fixing and
dinitrogen-fixing species
(functional group H1)
Intraguild LMS C. vicinus—C. kolensis Reduction of The inferior resource competitor C. vicinus (32)

predation

dominance switch

shared food source

preys on juveniles of the smaller C kolensis

Case study systems are Lake Muggelsee (LMS), Lake Veluwemeer (LVM), Lake Zwemlust (LZL), Lake Washington (LW), and Lake Vortsjarv (LV).

EWIs in Stepwise Shortened Time Series. To assess whether EWI
trends could have been detected in incomplete time series that
would have been available at 1 y or longer before the actual
transition took place, we repeated the EWI analysis on step-
wise shortened (i.e., yearly increments) time series of each
state variable. In 14 of the 16 time series, at least one of the
EWIs would have indicated a loss in ecosystem resilience be-
tween 1 and >10y before the critical transition. In three instances,
positive EWIs trends were seen in only the year before the
shift (SI Appendix, Table S5), whereas in 17 instances, the
median of the EWI trend distribution remained positive (i.e.,
showing the expected sign) up to the minimum time series
period analyzed (3 y).

Gsell et al.

Discussion

In this study, we assessed the detectability of four commonly
used EWIs (AR-1, SD, SK, and DR) in empirical time series of
freshwater ecosystems. By combining high-quality empirical time
series with ecological understanding and standardized methods,
we have shown that EWIs preceded critical transitions in natural
aquatic ecosystems, in some cases even several years ahead of the
shift, despite the potential shortcomings of empirical datasets,
such as observation error, sparse sampling, and low signal-to-noise
ratio (9, 24, 33). However, in a large proportion of cases the EWIs
failed, and the cases with positive EWIs generally showed low or
no significance. In addition, we found little agreement among signals,
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Table 2. Overview of all 14 state variables (16 time series) listing the direction of the shift, timing of the breakpoint (year-month), step
height (scaled to SD), two-sample Welch test significance, and for each EWI the sign of the median of the trend distribution (across all

rolling window sizes)

Direction Breakpoint Step
Case study State variable of shift (y-mo) (scaled to SD) t (Welch) AR-1 SD SK DR
LMS Phytoplankton, mg L™ Decrease 1990-5 0.803 9.92 + + +
Aphanizomenon, mg L™ P1 Decrease 1990-11 0.413 4.47 + + - +
Aphanizomenon, mg L~' P2 Decrease 2002-12 0.317 5.92 — + + —
Cyclops vicinus, ind L™ Decrease 1992-6 0.629 7.86 + - + +
Dreissena polymorpha larvae, ind L™ Increase 1993-9 0.388 —6.79 + + - +
Leptodora kindtii, ind L™' P1 Decrease 1987-11 0.776 6.58 - + - -
Leptodora kindtii, ind L™ P2 Increase 2005-7 0.239 -5.21 +) - - +
LW Secchi depth, m Increase 1976-10 1.29 -21.94 + + - +
Cryptophytes, 100 pm? L™ Increase 1977-7 0.627 -13.16 (+) - - +
Cyanobacteria, 100 pm3 L™ Decrease 19734 1.587 9.33 - - - -
Non-Daphnia cladocerans, ind L™ Decrease 1976-8 0.783 6.09 — + + -
LV H1, mg L™ Increase 1992-8 0.569 —6.75 +) + - +
P, mg L™ Increase 1977-12 0.281 -4.61 +) - + +
U, mg L™’ Decrease 1977-12 0.532 3.17 (+) - + +
LVM Nonalgal attenuation, m! Decrease 1995-9 1.058 9.05 - - - -
LZL Secchi depth, m Decrease 19929 1.098 7.97 (=) + + -

Proportion of EWI trend distribution medians corresponding to the theoretical trend expectation

10/16  9/1%6 7/16  10/16

The t (Welch) values in bold type are significant at the « = 0.05 level. The tested EWIs are autocorrelation at lag-1 (AR-1), standard deviation (SD), skewness
(SK), and density ratio (DR). Median trends that corresponded with the theoretical expectation are coded with “+"; trends that showed the opposite of

expected with “—"; brackets denote AR-1 trends crossing 0 on the scale.

and observed no relationship between EWI trends and potential
predictors, such as the ecological mechanism of the shift, state
variable level, magnitude of the transition, or sampling interval.

Use of Ecological Understanding in the Choice of State Variables. The
choice of case studies and state variables in this study was based
on expert knowledge of ecosystems that likely experienced crit-
ical transitions. Although this choice was based on an under-
standing of the ecological mechanisms that can give rise to
alternative states in aquatic ecosystems, it does not provide
conclusive evidence that the regime shifts that we analyzed
correspond to true critical transitions. Nonetheless, such a priori
choices of state variables for EWI analysis implicitly excluded
assumptions based on other transition types, such as responses to
step changes in the driver (34), but offered clear expectations of
the EWI behavior that should precede a transition (25). Because
mechanisms generating critical transitions can operate at all
ecosystem levels, relevant state variables range from discrete
variables, such as species-specific biomass (e.g., ref. 32), to ag-
gregated variables, such as Secchi depth, turbidity, or metabolism
(e.g., ref. 12). In addition, the case studies were chosen based on
the availability of long time series of monitoring data for relevant
state variables at sufficiently high temporal resolution and with
few missing values (35). Despite our conscientious choice of
ecosystems and state variables, we still found contradicting pat-
terns in EWIs.

Detection and Agreement Among Indicators. Not all EWIs were
equally reliable in detecting impending transitions (Table 2). In
44% of the 64 cases, the EWI failed. Only in three cases where
signals were positive were trends significant in >50% of data-
based and surrogate-based trend comparisons. Our significance
testing relied on estimating EWI trends in surrogate stationary
data fitted to the original time series to determine the rate of
false positives. Unfortunately, we lacked records to serve as
controls when comparing trends from comparable aquatic sys-
tems in which no transition occurred to estimate the rate of true
negatives (no alarm, or sensitivity) of the EWIs. Given the lack
of such controls, one potential way to measure the no alarm rate
is to derive trends from nonstationary models fitted to the data
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(36). In future work, it would be valuable to compare trends in
EWI in study systems that did not exhibit any changes or in which
changes were brought about by large external shifts in drivers.

Agreement between AR-1 and SD trends has been postulated
as a minimum requirement to signal the approach of a transition
(8). In our dataset, these two indicators concurrently increased in
only 5 of 16 time series. Critical transitions with increasing AR-1
and decreasing SD have been observed in other studies as well
(36). Such inconsistent trends between indicators may occur in
ecosystems that are subject to multiple concurrent regime shift-
generating processes that may or may not interact via shared
state variables and that may react differently to drivers and en-
vironmental noise (9). If such connected regime shift processes
work toward muffling variance in the measured state variable,
then the variance-based EWI signal could be suppressed (37).
Transitions from cycles to stable points also can generate de-
creasing variation (38) and may explain decreasing SD trends
like in the LMS Cyclops vicinus abundances or the LV functional
group U biomass.

In many cases, autocorrelation (AR-1) was generally low, and
in some cases it was even negative (e.g., LW non-Daphnia cla-
docerans). Low AR-1 values (far from the theoretical value of 1
at which critical transitions occur) reflect the fact that transitions
in the real world are likely triggered well before the actual tip-
ping point is reached (25, 39). Evaluation of the full power
spectrum for changes in power in aggregated low vs. high fre-
quencies over time indicated that higher-order AR processes did
not provide more information than the AR-1. This finding sug-
gests that the reported low or negative autocorrelation in our re-
cords likely originated from too long sampling intervals in cyclic
variables (e.g., population cycles), resulting in undersampled cycles
of fast-growing plankton and its related variables.

Successful detection of EWIs often has been related to the
availability of high sampling frequency data (40), although it has
been shown that EWIs still can be detected robustly in infre-
quently sampled data as long as the time series are sufficiently
long (41). Our study was based on data sampled at (or averaged
to) fortnightly and monthly intervals. Monthly intervals are rather
long compared with the generation or reaction times of the state

Gsell et al.
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variables tested in our study; for example, phytoplankton gener-
ation times are on the order of days, and thus monthly averages of
biomass aggregate multiple generations of phytoplankton. Nev-
ertheless, we could not detect a relationship between sampling
interval and the proportion of failing EWIs in our dataset.

Finally, data preparation, particularly choices regarding detrend-
ing and seasonal adjustment methods, can affect the autocorre-
lation structure in time series and hence the outcome of EWI
analyses. We used Gaussian filtering with a fixed bandwidth
based on the sampling frequency to detrend and seasonally
adjust the data before EWI analysis (SI Appendix, section S6);
however, despite this data preparation, some time series still
showed reduced traces of seasonality. Remaining seasonal sig-
nals may increase or decrease the intercept of the EWI trends,
but not the sign of the trend.

Early Detection Based on Incomplete Time Series. Informative
changes in some of the EWI metrics were already detectable
several years before the actual transition, although large differ-
ences in detection windows between state variables were ob-
served. These differences may be explained in part by the fact
that the actual shift is usually triggered by external stochastic
perturbations, which in turn are often independent of the drivers
of ecosystem stability loss (42). However, in many cases EWIs
indicated sustained instability over the period tested in our study,
which may be attributed to either an insufficient time span
available for testing (e.g., LZ) or unrecognized interacting pro-
cesses that promoted prolonged instability in these ecosystems.

Gsell et al.

Conclusion
Despite our informed and conscientious choice of case study
ecosystems and state variables, we found relatively low de-
tectability of EWIs before the documented transitions, and when
EWIs were detected, the agreement among them was low. Our
findings are in line with results from an assessment of the de-
tectability of EWIs before nonlinear transitions (43). Although it
is encouraging that we could detect EWIs in some of our em-
pirical aquatic time series using data derived from commonly
used monitoring schemes that were not designed for this pur-
pose, the lack of reliability and agreement among signals limits
the potential application of EWIs only to well-understood eco-
systems (35). In such well-understood ecosystems, harnessing
EWIs as metrics of loss of resilience may aid planning for the
unpredictable and could be part of strategic foresight programs
for management and conservation (44); however, our analysis
suggests that these metrics can be of added value only in com-
bination with existing frameworks (e.g., alternative stable-state
theory) and in-depth ecosystem knowledge. Furthermore, taking
into account the underlying assumptions and requirements of
EWI analysis can inform managers about adaptations in moni-
toring schemes by advising about relevant variables and temporal
sampling resolution to adequately capture changes in the resil-
ience of systems.

One way forward may be the advent of automated, continuous
high-frequency monitoring, ideally monitoring multiple lakes
with similar properties for comparison (35). To increase our
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Fig. 2. Robustness and significance testing. Mann—Kendall trend distribu-
tions for EWIs AR-1 and SD (panel) and per analyzed time series (boxplots)
and the proportion of significant differences in trends between data-based
and surrogate time series across all rolling window sizes (significance, gray
bar plots). Positive values of trends in the boxplots represent increasing EWI
trends. Note that in almost all time series, the trends were robust to the
choice of rolling window size. Significance testing was based on comparing
indicator trends produced from stationary surrogate time series to the em-
pirically reported for fixed rolling window size (Methods).

understanding of critical transition generating processes, eco-
system models, such as PCLake, can help bridge the gap between
simple minimal models and the full complexity of natural systems
and allow combined analysis of, e.g., food-web theory and alter-
native stable states theory and indicators of ecosystem resilience
(45). Ideally, such insights can serve to broaden our search image
in empirical EWI patterns instead of relying on a generic increase
in variance without understanding the inherent variability in eco-
systems. In the meantime, the reliability of EWIs for predicting
abrupt shifts in ecosystem state should be viewed with caution.

Methods

Data Preparation and Breakpoint Detection. The data preparation and sta-
tistical analysis protocol was identical for all 16 state variable time series. Each
time series was analyzed at the highest temporal resolution available or at a
lower resolution that resulted in less missing data (S/ Appendix, Table S2).
LMS and LW were analyzed at fortnightly; all other case studies were ana-
lyzed at monthly intervals. Because our time series methodology requires
continuous and equidistant data, we imputed missing values up to a maxi-
mum of four consecutive time steps using a Kalman filter (46). Time series
with longer gaps were shortened to start or end at the gap (e.g., LV). Each
time series was standardized by mean centering and SD scaling for conve-
nient comparison of step change heights. The timing of the step was de-
termined by breakpoint analysis, given that step changes in the respective
state variables may differ from the timing of whole-system step changes
reported in the literature. Robust estimates of the timing of step change
were achieved using three complementary breakpoint estimation methods:
(i) additive decomposition of time series in seasonal, trend, and residual
components and subsequent iterative fitting of piecewise linear season and
trend models (47) using the R package “bfast” (48); (ii) testing for step
changes in the average using the Pettitt test (49); and (iii) STARS, a combi-
nation of a sequential partial CUSUM method and a t test (50). If at least two
methods showed similar timing for a step change (+12 mo), then the stan-
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dardized original time series was split at that breakpoint. Differences be-
tween prebreakpoint and postbreakpoint means of the time series were
tested with the Welch two-sample t test (51) (Table 2).

Because of a 1-y gap in the time series, breakpoint timing of two state
variables—LV functional groups P (eutrophic epilimnion species) and U
(summer epilimnion species)}—was determined differently. Here we assessed
whether large changes in the biomasses of the functional groups occurred
during the gap, indicating a potential shift. The pre-1978 and post-1978 time
series showed significantly different means for functional group U (Welch
two-sample t test, t = 3.52; df = 128; P < 0.001; difference in means, 0.29*SD)
and functional group P (Welch two-sample t test, t = —4.67; df = 439; P <
0.001; difference in means, 0.55*SD), suggesting that the shift in functional
groups U and P occurred during the year 1978 (Table 2). Because both of
these time series showed no further breakpoints in the years after 1978, we
conservatively assumed 1977 to be the transition year.

EWI Analysis. The prebreakpoint time series was seasonally adjusted using a
Gaussian smoother with a kernel bandwidth based on the number of data
points per year (i.e., 12 for monthly datasets and 26 for fortnightly datasets;
other methods are compared in S/ Appendix, section S6). A bandwidth of 1y
was chosen to account for annually recurring patterns while retaining in-
formative low- and high-frequency variability other than long-term trend
and season (15). In three residual time series—LMS Dreissena (two outliers)
and Aphanizomenon period 1 and LW Cyanobacteria (one outlier each)—
local outliers were replaced by Kalman-imputed values. The residuals were
then passed on to analysis of EWIs AR-1, SD, SK, and DR with testing for
robustness to the size of rolling window and testing for significance (false
positives) using the R package “earlywarnings” (9). In addition, the static
choice of fixed compared frequencies in the EWI DR was confirmed to be
sufficiently capturing changes of the full power spectrum of the prebreak-
point residuals time (based on its estimated smoothed fast Fourier
periodogram).

Robustness and Significance Testing. The trends in the estimated temporal
evolution of EWIs from the rolling window approach were quantified using
the nonparametric Mann-Kendall trend test, which tests for monotonic
trends based on the Kendall t rank correlation coefficient (9). Because the
size of the rolling window can affect EWI trends (36), a robustness analysis
was performed to estimate the distribution of trends and proportion of
trends that did not differ in sign from the median of the trend distribution.
This was done using yearly increments of the residuals time series covered by
the rolling time window [2 to n — 2y, function “sensitivity_ews” (9), where
n is the number of years in each prebreakpoint time series]. Significance
testing was done by comparing the data-based EWI trend against a boot-
strapped distribution of 200 surrogate time series-based EW!I trends. The
surrogate time series were generated based on an ARMA(p,q) model fitted
on the residuals time series. The bootstrapped distribution of trends depicts
the probability that a particular trend could occur by chance in time series of
the same ARMA structure [function “surrogates_ews” in R package “ear-
lywarnings” (9)]. The data-based EWI trend was deemed significant if it fell
on one of the 5% tails of the surrogate-based trend distribution («x = 0.1).
This significance testing was repeated for all rolling window sizes, and the
proportion (%) of significant trends over all rolling window sizes was
reported.

Relationship of EWIs with State Variable Categories and Agreement Among
Signals. The relationships between the occurrence of each EWI and the
predictor variables mechanism (competition, IGP, or trophic cascade), state
variable category (species, group, ecosystem), step change height, length of
prebreakpoint time series, and sampling interval (fortnightly or monthly)
were analyzed by logistic regression [identity link for continuous predictors
(step change height and time series length); logit link for categorical pre-
dictors] with Bonferroni-corrected post hoc testing. The median of the trend
distribution across all time window sizes was used to assess agreement
among EWIs.

Early Detection of EWIs. To assess the potential timeliness of EWIs in detecting
the approaching transition, EWI trends were quantified on stepwise short-
ened prebreakpoint time series, starting with the full time period and con-
tinuing with stepwise reduction of the time series by cutting off the last year of
data. The minimum time series length was set to 3 y to allow for meaningful
Kendall = estimation. The number of years before the shift that an EWI could
have been detected was set by assessing the maximum number of stepwise
reductions before the theoretically expected EWI trend disappeared (i.e., when
the median of the Kendall t trend distribution turned negative for AR-1, SD,

Gsell et al.
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and DR or changed sign for SK). All data analyses and graphing were con-
ducted using the R language environment for statistical computing (52) and
associated library extensions.
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